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Regression versus Box-Jenkins    ( time series analysis) Case Study 

A. Regression versus Multivariate Box-Jenkins    

If you are going to analyze time series data perhaps this discussion will be of help. Regression was originally developed for cross-sectional data but Statisticians /Economists have been applying it ( mostly incorrectly ) to chronological or longitudinal data with little regard for the Gaussian assumptions. 
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For starters...

Following is a brief introduction to time series analysis 

Time series = a sequence of observations taken on a variable or multiple variables at successive points in time. 

Objectives of time series analysis: 

1. To understand the structure of the time series (how it depends on time, itself, and other time series variables) 

2. To forecast/predict future values of the time series 

What is wrong with using regression for modeling time series? 

* Perhaps nothing. The test is whether the residuals satisfy the regression assumptions: linearity, constant variance, independence, and (if necessary) normality. It is important to test for Pulses or one-time unusual values and to either adjust the data or to incorporate a Pulse Intervention variable to account for the identified anomaly. 

Unusual values can often arise Seasonally, thus one has to identify and incorporate Seasonal Intervention variables. 

Unusual values can often arise at successive points in time earmarking the need for either a Level Shift Intervention to deal with the proven mean shift in the residuals. 

* Often, time series analyzed by regression suffer from auto-correlated residuals. In practice, positive autocorrelation seems to occur much more frequently than negative. 

* Positively auto-correlated residuals make regression tests more significant than they should be and confidence intervals too narrow; negatively auto-correlated residuals do the reverse. 

* In some time series regression models, autocorrelation makes biased estimates, where the bias cannot be fixed no matter how many data points or observations that you have. 

To use regression methods on time series data, first plot the data over time. Study the plot for evidence of trend and seasonality. Use numerical tests for autocorrelation, if not apparent from the plot. 

* Trend can be dealt with by using functions of time as predictors. Sometimes we have multiple trends and the trick is to identify the beginning and end periods for each of the trends. 

* Seasonality can be dealt with by using seasonal indicators (Seasonal Pulses) as predictors or by allowing specific auto-dependence or auto-projection such that the historical values (Y(t-s)) are used to predict Y(t) 

* Autocorrelation can be dealt with by using lags of the response variable Y as predictors. 

* Run the regression and diagnose how well the regression assumptions are met. 

* the residuals should have approximately the same variance  otherwise some form of "weighted" analysis might be needed. 

* the model form/parameters should be invariant i.e. unchanging over time. If not then we perhaps have too much data and need to determine at what points in time the model form or parameters changed. 

Problems and Opportunities

* 1. How to determine the temporal relationship for each input series, i.e. is the relationship contemporaneous, lead or lag or some combination? How to identify the form of a multi-input transfer function without assuming independence of the inputs.) 

· 2. How to determine the arima or autoregressive model for the noise structure reflecting omitted variables. 

For example if the model is

 y(t)=3*x(t) + 2*z(t) + a(t)

and you omit z(t) from your equation

y(t)=3*x(t) + e(t)

where e(t)=2*z(t) + a(t) thus the auto-regressive nature of e(t) is a look-a-like for z(t).

· 3. How to do this in a robust manner where pulses, seasonal pulses, level shifts and local time trends are identified and incorporated. 

e.g.
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A very natural question arises in the selection and utilization of models.

One asks, "Why not use simple models that provide uncomplicated solutions?"

The answer is very straightforward, "Use enough complexity to deal with the problem and not an ounce more". Restated, let the data speak and validate all assumptions underlying the model. Don't assume a simple model will adequately describe the data. Use identification/validation schemes to identify the model.

 

A transfer function can be expressed as a lagged auto-regression in all variables in the model. AUTOBOX reports this form so users can go directly to spreadsheets for the purposes that you require. Care should be taken to deal with Gaussian violations such as Outliers (pulses) , Level Shifts, Seasonal Pulses , Local time trends , changes in variance , changes in parameters , changes in models ...... just to name a few ..

It has been said that a picture is worth a thousand words thus two pictures should be worth two thousand.
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In teaching regression, I have found that if you ask the students to “shuffle the deck” or to re-sequence the Time Series Data and ask the question “Do the estimated parameters change ?” you get interesting results.
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Most students think the ordinary regression coefficients will change or at least they hope so! The truth is that the answers (the model coefficients) do not change as a result of the re-sequencing. 

This illustrates the concept of minimizing the error sum of squares irrespective of the order. If that concerns you then you should be more interested in time series analysis than you may currently be.
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Consider bivariate SAT Scores data on 15 students:
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Now suppose we reorder the pairs of data,
ensuring that the relationship betweenanx anda y
remains unchanged. For example, if we
mterchange the first and the last data point we
would have,

MATH (Y) 466492493 438 438 484 481480 472472470 468 467 466 492
VERBAL (%) 424 466 463 460 455 453 445 444 434 431 420 420 477 424 466




The results prior to interchanging are:
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Results after interchanging:
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If you ask a forecaster, “Do you think the past causes the future?” They will nearly always say “No”. Having said that they normally proceed to simply use the past values to project the future. 

Autoprojective tools or models are surrogates for omitted variables. An ARIMA model is the ultimate case of an omitted variable or sets of variables. In most cases, as long as true cause variables don't change, history is prologue. However, one should always try to collect and use information or data for the cause variables or potential cause variables. The second approach can be contrasted to the former by referring to autoprojective schemes as "rear-window driving" while causative models or approaches are "front and rear-window driving" because one often has good estimates of future values of the cause variables ( price, promotion schedule, occurrence of holidays, competitive price, etc. )

The past of the series becomes a proxy for an omitted stochastic series.

  This can be easily illustrated as follows;

If y(t)=f[x(t)] and

x(t)=g[x(t-1)] for example then by substitution

y(t)=h[x(t-1)] but since y(t-1)=f[x(t-1)] we have

y(t)=v[y(t-1)]

Some well-intentioned practitioners cleanse their data  prior to model building throwing out data driven by events and even the onset of new seasonal patterns. The data that was cleansed often reflects the impact of omitted causal variables and that data should be treated with event variables (either stochastic or fixed   that are known a-priori and omitted stochastic series (lurking variables) and newly found event variables that are discovered via intervention detection. Suffice it to say that the history of the series when used is a proxy for omitted variables.

For example if the following model is appropriate

 yt = [image: image22.png]


*xt + *zt  + [image: image23.png]


1*xt-1 +  C1*Lt=t1 + D1* zt-1
and you incorrectly assume                     yt =  [image: image24.png]


*xt + *zt   . 

The estimates of [image: image25.png]


 are biased. Furthermore the tests of significance are meaningless as there will be autoregressive structure in the error term and a non-constant error mean.
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Ordinary regression assumes a certain structure regarding the relationship between so-called exogenous or input series that may not arise when dealing with time series data. The assumed model is

yt = [image: image27.png]


*xt + *zt    

where z is a normal ( independent and identically distributed variable) this also implies that z can not be predicted from the past of x. It is crucial that one recognize that for standard identification schemes to be effective all variables have to be stationary and free of autoregressive structure.
For example one might need lags of the z variable or to include perhaps a lag effect on the error term or a Level Shift, Local Time Trend, Seasonal Pulse or a Pulse Variable to reflect unspecified Deterministic Structure leading to for example. 

yt = [image: image28.png]
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1*xt-1 +  C1*Lt=t1 + D1* zt-1
As we will explore Box-Jenkins methods allow for the identification and incorporation of powerful augmentation strategies, customized for each problem which extract information from not only the past but information in leads, contemporaneous structure and lag structures in suggested X’s and information in the errors which reflect systematic patterns and newly found Intervention variables reflecting previously unknown deterministic impacts.

There are three components to a forecasting model which should be carefully selected and combined (if necessary). It is important to note that these three components have to be searched simultaneously as one component can often have similar characteristics to another. The three components are:

1. history of the series of interest

2. data on auxiliary or supporting possible cause variables

3. Pulses, Level Shifts , Seasonal Pulses or Local Time Trends

The following lays out a general approach to Time Series but doesn’t point to the pitfalls that await the modeler. Most business forecasting problems could be substituted here without loss of generality.

Distributed lags analysis is a specialized technique for examining the relationships between variables that involve some delay. For example, suppose that you are a manufacturer of computer software, and you want to determine the relationship between the number of inquiries that are received, and the number of orders that are placed by your customers. You could record those numbers monthly for a one year period, and then correlate the two variables. However, obviously inquiries will precede actual orders, and one can expect that the number of orders will follow the number of inquiries with some delay. Put another way, there will be a (time) lagged correlation between the number of inquiries and the number of orders that are received. 

Time-lagged correlations are particularly common in econometrics. For example, the benefits of investments in new machinery usually only become evident after some time. Higher income will change people's choice of rental apartments, however, this relationship will be lagged because it will take some time for people to terminate their current leases, find new apartments, and move. In general, the relationship between capital appropriations and capital expenditures will be lagged, because it will require some time before investment decisions are actually acted upon. 

In all of these cases, we have an independent or explanatory variable that affects the dependent variables with some lag. The distributed lags method allows you to investigate those lags. 

Detailed discussions of distributed lags correlation can be found in most econometrics textbooks, for example, in Judge, Griffith, Hill, Luetkepohl, and Lee (1985), Maddala (1977), and Fomby, Hill, and Johnson (1984). In the following paragraphs we will present a brief description of these methods. We will assume that you are familiar with the concept of correlation and the basic ideas of multiple regression. 
Suppose we have a dependent variable y and an independent or explanatory variable x which are both measured repeatedly over time. In some textbooks, the dependent variable is also referred to as the endogenous variable, and the independent or explanatory variable the exogenous variable. The simplest way to describe the relationship between the two would be in a simple linear relationship: 

Yt = [image: image30.png]
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i*xt-i 
In this equation, the value of the dependent variable at time t is expressed as a linear function of x measured at times t, t-1, t-2, etc. Thus, the dependent variable is a linear function of x, and x is lagged by 1, 2, etc. time periods. The beta weights ([image: image32.png]


i) can be considered slope parameters in this equation. You may recognize this equation as a special case of the general linear regression equation. If the weights for the lagged time periods are statistically significant, we can conclude that the y variable is predicted (or explained) with the respective lag. 

We for historical purposes will review some early work by both  Durbin (1950) and  by Shirley Almon.

Durbin and Watson  
A common problem that often arises with the following model

y(t) = a + b*x(t) + e(t), 

is that you often find that e(t) has large, positive serial correlation. Ignoring this results in a badly mis-specified model. Durbin suggested that one study the auto-regressive structure of the errors and finding a significant correlation between e(t) and e(t-1) one should rather entertain the larger model

y(t) = a + b*x(t) + e(t)

e(t) =  rho*e(t-1) + a(t) an 

ARIMA model (1,0,0)

culminating in an a(t) process that was normal,independent and identically generated , N.I.I.D. for short.

Durbin and Watson developed a test statistic
and paved the way for empirical model restructuring via diagnostic checking.

The problem however was that they were observing a symptom , significant autocorrelation of the e(t)’s at lag 1 and inferring cause.

Significant autocorrelation of lag 1 in an error process can arise in a number of ways.

1.Another ARIMA model might be more appropriate 

2.Additional lags of X might be needed to fully capture the impact of X. When additional lags are needed one gets a “false signal” from the autocorrelation function.

3.Outliers may exist at successive points in time causing a “false signal” from the autocorrelation function.

4.The variance of the errors e(t) might be changing over time.

5.The parameters of the model might be changing over time.

Thus the naïve augmentation strategy of Durbin and Watson did not necessarily address itself to the cause.

Other researchers, notably Hildreth and Liu made contributions in the 60’s but it was all like an appetizer to the rigorous approach incorporated into the Box-Jenkins approach. 

Namely

1. the acf of the tentatively identified errors is examined to suggest the ARIMA form

2. the cross-correlation of these e(t) with lags of X to detect needed lag structure in X

and 

3. the need for Pulses, Level Shifts , Seasonal Pulses and/or Local Time Trends to guarantee that the mean of the error is zero everywhere or equivalently that the mean of the errors doesn't differ significantly from zero for all subsets of time.

Almon Distributed Lag 
A common problem that often arises when computing the weights for the multiple linear regression model where lags of X  are thrown in arbitrarily up to some assumed maximum is that the values of adjacent (in time) values in the x variable are potentially highly correlated. In extreme cases, their independent contributions to the prediction of y may become so redundant that the correlation matrix of measures can no longer be inverted, and thus, the beta weights cannot be computed. In less extreme cases, the computation of the beta weights and their standard errors can become very imprecise, due to round-off error. In the context of Multiple Regression this general computational problem is discussed as the multicollinearity or matrix ill-conditioning issue. 

Almon (1965) proposed a procedure that will reduce the multicollinearity in this case. Specifically, suppose we express each weight in the linear regression equation in the following manner: 
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1*i + ... + [image: image36.png]


q*iq 
Almon could show that in many cases it is easier (i.e., it avoids the multicollinearity problem) to estimate the alpha values than the beta weights directly. Note that with this method, the precision of the beta weight estimates is dependent on the degree or order of the polynomial approximation. 

Misspecifications. A general problem with this technique is that, of course, the lag length and correct polynomial degree are not known a priori or that  a polynomial is even a correct assumption. The effects of misspecifications of these parameters are potentially serious (in terms of biased estimation).  

Furthermore if there are any omitted Deterministic Variables there effect remains in the error term thus distorting estimates and the resulting tests of significance. 

Box and Jenkins solved  the identification problem by pre-filtering to create stationary surrogate variables where the surrogate x was free of all autoregressive structure thus identification of the transfer between the original variables was less ambiguous.

llustrative Examples. 

Consider the following simple example where we have 18 years of annual data for the country of Indonesia. We have the unemployment rate Yt  and xt   the minimum wage set by law.

             xt           Yt     

1981
2.700
451.000                      1982
3.000
462.000                       1983
2.000
485.900                      1984
2.000
516.000                      1985
2.100
543.900                       1986
2.600
550.100                      1987
2.500
599.900                      1988
2.800
645.100                      1989
2.800
670.100                      1990
2.500
739.300                       1991
2.600
1280.800                    1992
2.700
1403.100                     1993
2.800
1675.100                     1994
4.400
1899.800                     1995
7.200
2201.500                     1996
4.900
2345.200                     1997
4.700
2745.000                    1998
5.500
3218.800

A plot of Unemployment versus Minimum Wage, all series standardized .
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The ordinary and potentially  incorrect simple regression between these two variables yields :

Yt =-472.19+517.26*xt +zt                                           

While a more correct model, i.e. a Box-Jenkins model is

yt =  -951.73+341.55*xt +   291.521*xt-1                                           

         +[ Lt=t1 ][(+  715.16 )]

         +[ Pt=t2 ][(-  1303.8 )]

         +[ Pt=t3 ][(-  1190.8 )]

         +[ Pt=t4 ][(-  398.04 )]

         +      [*zt  ]

                                Yt   = UNEMPLOYMENT                 

                                              x    = MWY                          

             :  NEWLY IDENTIFIED VARIABLE     Lt=t1 = I~L00011 11   LEVEL   

             :  NEWLY IDENTIFIED VARIABLE     Pt=t2 = I~P00015 15   PULSE   

             :  NEWLY IDENTIFIED VARIABLE     Pt=t3 = I~P00016 16   PULSE   

             :  NEWLY IDENTIFIED VARIABLE     Pt=t4 = I~P00002  2   PULSE   
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Yielding more than a 90% reduction in variance and an increase in R-Square from  67.7% to 98.1% . 

The final model yields the lag effect of Minumum Wage on Unemployment and the Level Shift at time period 1991 ( period 11 of 18 ) which reflects on omitted variable that permanently changed the trend at 1991. In addition there were three other period of unusual one-time values 1982,1995 and 1996 which were treated on order to come up with Robust Estimates of the Regression parameters of Unemployment as it responded to contemporaneous and lagged Minumum Wage Rates. 

Regression versus Univariate Box-Jenkins (ARIMA)

B. Regression versus Univariate Box-Jenkins    
ARIMA, also known as Rational Expectations Model is a pure "rear-window driving" approach as it simply develops a weighted average of the past. Historical Interventions deterministic in nature such as Pulses, Level Shifts, Seasonal Pulses and/or Local Time Trends are incorrectly resolved with with by differencing or ARMA structure. These effects should

be explicitely included in the model creating a ROBUST ARIMA MODEL which combines both memory and ARIMA structure. Unfortunately most practitioners being limited by their software were unable to expand the ARIMA model to capture and incorporate these effects.

Even if you correctly combine memory (ARIMA) and dummies ( Pulses, Seasonal Pulses, Level Shifts and Local Time Trends you are still simply using only the past of the time series.

The future is not CAUSED by the past but the past can be said and proven to be a proxy for omitted variables ( the X's in the causative model ).

Having said that some other reflections are in order.

If the omitted variable is stochastic and has no internal time dependency (white noise) then its effect is simply to increase the background variance resulting in a downward bias of the tests of necessity and sufficiency. If however the omitted series is stochastic and has some internal autocorrelation then this structure evidences itself in the error process and can be identified as a regular phenomenon and appears as ARIMA structure. For example, if degree is needed but omitted a seasonal ARIMA structure will be identified and becomes a surrogate for the omitted variable.

If the omitted variable is deterministic and without recurring pattern it may be identified via surrogate (intervention) series.

If the model is under-specified the omitted structure will show up in error diagnostics leading to model augmentation.

The engine should identify intervention variables that may be simply a one time pulse or may be systematic (11th week of the year for example). Consider the case where an important variable like the occurrence of St. Patrick s day in predicting beer sales has been omitted from the model. The errors from that model would contain an unusual spike every March 17th (11th week of the year) and would help identify the omitted variable. The series may have changed level and to some statistically deficie nt procedures this might appear like a trend change but not to a superior engine. In some cases there is a gradual or asymptotic change to a new level. This process is identifiable as dynamic change.

The intervention series should be identified by a maximum likelihood procedure which augments the list of input series. This procedure is not simply taking the model residuals and standardizing them to determine the outliers. A number of software developers report this as outlier detection but this approach requires the errors to be independent of each other.

The concept of data mining should be incorporated where the engine detects deviation. Detecting deviation, which is the exact opposite of database segmentation, identifies outlying points in a data set (records that do not belong to any other cluster) and determines weather they can be represented by statistically significant indicator variables. Deviation detection is often the source of true discovery since outliers express deviation from some known expectation and norm. It is very important that intervention detection be done automatically in both a univariate (non-causal) model and a multivariate (causal) model.

In many applications there exists local trends which sometimes change abruptly. ARIMA models are deficient in dealing with this phenomena as it uses level shifts or differencing factors to mimic the process. In some cases dummy variables using the counting numbers is a more appropriate and visually correct structure keeping in mind that the trend may not have started at the first data point. In general the trend may have a dead period in the beginning or at the end. A number of trends may be necessary in conjunction with pulses etc. and an error process involving some arbitrary ARIMA structure.

Consider the Indonesia example and let’s use an ARIMA model for the Unemployment series. We will present both a simple ARIMA model without Intervention Detection and the one with Intervention Detection.
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and with Intervention Detection
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A comparison …

[image: image42.png]ARINA ARINA + INTERVENTION

DETECTION
# of Resiauals (R} 17 18

# of Deg of Freedom 16 14

Sun of Squares 490374. s5400.6

variance 28845.5 3077.51

R Square 962073 .995526

D-¥ Statistic 1.12855 3.17002




The two equations have different structures and forecasting implications, neither of them adequate as the true causal variable Minimum Wage Rate has been omitted for pedantic reasons.

ARIMA by itself yields

yt =  153+yt-1  

which is a random walk model with a trend constant

ARIMA with Intervention Detection yields

yt =  418+25*t1 + 231*t2 +273*p3 

         +[ Tt=t1 ][(+  25 )]

         +[ Tt=t2 ][(+  231)]

         +[ Pt=t3 ][(+  273)]

             :  NEWLY IDENTIFIED VARIABLE     Tt=t1 = I~T00001  1   

TREND 

             1,2,3,4,5,6,7,8,9

               10,11,12,13,14,15,16,17,18

             :  NEWLY IDENTIFIED VARIABLE     Tt=t2 = I~T00010 11 TREND   

             0,0,0,0,0,0,0,0,0,

             1,2,3,4,5,6,7,8,9  

             :  NEWLY IDENTIFIED VARIABLE     Pt=t3 = I~P00018 18   PULSE 

             0,0,0,0,0,0,0,0,0,

             0,0,0,0,0,0,0,0,1

which is a trend model tin time with a change in slope or trend at time period 10 and an unusual value at time period 18. Thus the second trend variable sets up to test the hypothesis that the trend increased at time period 10 by 231 from the prior trend of 25. The pulse variable reflects an assertion that the 18th value was significantly higher than  what was expected by 273.

Summary

Multivariate Box-Jenkins is essentially a healthy marriage between Regression(X) and ARIMA. That is why it is sometimes referred to as XARMAX . When you add  Intervention Detection into the mix you get AUTOBOX.
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Standardized Values are indicated ((X - Mean)/SIGMA)
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