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ABSTRACT / RESUME

This note provides a technical discussion on the time series model employed in
ORA Project Report 692 "An Attrition Forecasting Model ". Apart from the

description of the model, the note also provides a listing of the data and sources
used in the attrition study.

On trouve dans le présent rapport une analyse technique du modéle de série
chronologique employé dans le compte rendu du projet 692 de RA Op intitulé "An
Attrition Forecasting Model". A part la description du modéle, le rapport fournit

aussi une liste des données et des sources utilisées dans I'6tude sur I’attrition.




EXECUTIVE SUMMARY

This note is designed to accompany a preceding project report (ORA Project
Report 692) on forecasting voluntary attrition in the Canadian Forces. This note
includes a detailed discussion on time series modelliing and a complete listing of the

data and sources employed in the attrition study.

Since the model and the results are discussed fully in Project Report 692,
this paper will not repeat the study findings. Instead, a technical summary of the
methodology is detailed here to assist other researchers interested in replicating or
critically examining the model and methodology. Given the likelihood of a follow

up study on attrition, the note may also help as a modelling reference guide.
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INTRODUCTION

1. This note provides a technical discussion on the time series model employed
in ORA Project Report 692 "An Attrition Forecasting Model”. Apart from the
description of the model, the note also provides a listing of the data and sources.
The study is sponsored by the Directorate Establishment and Manpower
Requirements (DEMR) under ORA activity number 45744,

2. Usually detailed discussions on data and methodology are relegated to the
annexes of the main report. However, the sponsor or the sponsoring agency is
often interested in the results and implications for policy or decision making
process and consequently prefers the report to include as little technical detail as
possible. For the analyst who wants to replicate the study or critically examine the
results on the other hand, the reverse is required. Thus in order to satisfy both

requirements the project is divided into two separate reports.

3. As indicated in Project Report 692, more studies on voluntary attrition are
expected and this note is designed to serve as the methodological reference for
subsequent studies. The rest of the paper consists of three parts. Section |
presents the modelling process of univariate (single variable) Autoregressive
Integrated Moving Average (ARIMA) models while section Il deals with the
multivariate version. In section lll selected time series and econometric modelling
problems and consequences are summarized. The final section presents the

detailed data and sources.



.
1. MODELLING UNIVARIATE ARIMA PROCESSES.

4, Univariate Box-Jenkins (B-J from here on) is a time series modelling process
which describes a single series as a function of its own past values. The purpose
of the B-J process is to find the equation that reduces a time series with underlying
structure to white noise (Box and Jenkins, 1970). Since the equation accounts for
the predictable portion of the time series, it can be used to forecast future values

of the series.

5. The modelling procedure itself is a three stage iterative
process :
a. Identification: Choosing a tentative model form by examining a plot of

the series and several key statistics (such as the

autocorrelation and partial autocorrelation functions).

b. Estimation: Fitting an appropriate model through some non-linear

estimation procedure to the time series under study.

c. Forecasting: Using the fitted model to predict future values of the time
series.
6. The ARIMA models used for forecasting the time series are of

the general multiplicative type (Box and Jenkins, 1970), that is:

¢,(B)D (B*) V'V, Z,=0,(B)8 ,(B“)a, (n

Where s denotes periodicity of the seasonal component (4 for quarters and 12 for

months); B denotes the backward operator, i.e:
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BZ,=2,.,, B"Z,=2,,;

V¢ =(1-B)! is the ordinary difference operator of order d; °V,=(1-B*)° is
the seasonal difference operator of order D; ¢,(B) and ®_,(Bs) are stationary
autoregressive operators (they are polynomials in B of degree p and in B® of degree
P, respectively); 6,(B) and ©4(B°) are invertible moving average operators (they are
polynomials in B of degree q and in B® of degree Q, respectively); a, is a purely
random process. The general multiplicative model (1) is said to be of order (p,d,q)
(P,D,Q),.

Model Identification

7. The identification phase entails examining the time series in order to choose
a tentative model form. There are several key statistical tools used during this
phase. The two most important tools are the autocorrelation function and the
partial autocorrelation function of a time series. The first step in identification is to
make the series stationary. As explained in the accompanying Project Report 692,
in a stationary series the mean and the variance are constant over time. This
implies two types of methods for inducing stationarity. Applying the appropriate
differencing factor to a series creates a mean stationary series. By applying the

correct power transformation, a variance stationary series may be obtained.

8. The autocorrelations of a time series process provide an indication as to the
appropriate level of differencing that is required. The need for a power
transformation can be ascertained by examining plots of both the original series
and the transformed series (Cryer, 1986). If the autocorrelation function starts out
high and decays slowly, it usually implies the need for differencing. To determine
the order of the differencing, the number of time periods between the relatively

high autocorrelation is usually a good indicator (see figure 1 for example).

9. On the other hand if the series shows a variance that changes over time,

transforming the original series may provide a stationary variance series.



The transformation can be

obtained from a flexible
ACF of an AR(1) Process

family of transformations Phi=.9

introduced by Box and Cox 0.8 -
(1964,Vandaele,1983). For a
given value of A, the

transformation:
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Figure 1 A Typical AR(1) Process
A
s@=22 ax0 @
=log(x) A=0

note if A equals 1, it implies the original series, a value of

-1 implies the inverse (of the original series) and so on .

10. Box-Cox transformations for forecasting purposes have two uses (Box-
Cox,1964). The first is to make a series variance stationary while the other is to
assist in determining the relationship between two or more variables (for example,

between dependent and explanatory variables). Consider

A_
z & ®)
(Am) A
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suppose m=0 then we have the following three cases:
Case a: A=0

(Z,)°—1
0
A
hma[(z‘) -1} (3a)
-0 OA
) Zt"ant
Lim =InZ,
a0 1

(above derived using the L'Hdpital’s rule)
Case b: A= 1

Z)-1
T (3b)
=Z -1
Case c: A= -1
z)1'-1
— (30)
==(Z)'-1

The Box-Cox method is more accurate than just observing the plot of a series. If
the type of software allows for Box-Cox test one can estimate a simple mean
model with lambda determination option used (AFS, 1986,1990).

11.  Once stationarity is obtained, the autocorrelation and partial autocorrelation

functions of the transformed and stationary series (ARMA) will be studied so as to
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determine the order of the autoregressive and/or moving average process. An

estimate of the theoretical autocorrelation function is given by:

Z (xt_;c) (%, ~X)
r= t=k+1 @

i (x;—i)z

t=1

where X is the sample mean. For uncorrelated observations, the variance of r, is
approximately:

V(r,) ~= 1/n where n is number of observations.
For the general case, however, the Bartlett (Box-jenkins,1970; 34-35)

approximation is used to calculate the standard deviation:

(42)

Vrj>k-— 1

The theoretical autocorrelation is also calculated as the ratio of the covariance and

variance of the time series at specific lags. The following are three simple ARMA

models and their theoretical acf.

CASE 1__AR(1)
e = ¢, + n where n, is white noise
E(n)= 0
E(n)’= o’

E(n,ny,) = 0 V i¥j




e, = ¢(de,+n,)+n,

@’ (pe+n,,) +on,,+n,

It

¢° (peytn;) +¢2nt-2+¢nt-l +n,

Pe,; +n, +on, +eMN, +....+éing.,,

and for j -> o,

e, = n, +¢n,, +¢pM,t...

E(e,)= E(n+¢n,  +¢’n,+...) = 0

E(e,)’= E(ngt¢n +¢’n,+...)>

E(n,) *+¢’E(n,,;) *+¢*E(n,,)%. . .

= 0% +¢’c’+.... since E(n;n;)=0

all cross terms are ignored.
o2 (1+¢p?+¢i+...)

E(e) %= o?

1-¢?

E(ee,) = E(n, + ¢n, + ¢'n,+...) (n,; +¢n,+¢’ng;...)
= ¢o? +¢°0? +¢’0i+...
=¢pc? (1 + ¢ + ¢*+...)
= ¢o?

1-¢°



P = (ee) @02/ 1-¢°

( et) 2 0'2/ 1"'¢2

E(ee,) = E(n + ¢ng + ...+¢n, +0"ng .0 0) (N @0, +o0)
= (¢ko'2 +¢k+1¢02+ ¢k+2¢20-2+. .. )

= ¢ 02(1 + ¢+ ¢*+...)

= gko?
1-¢?
P = E(eey) ¢*0’/1-¢’
—— e = ¢k
E (et) 2 0'2/ 1-¢2
CASE 2 MA(1)
e= n, + On, (again n, is white noise)
E(e)= 0
E(e)) = E(n, +0nt-1)2
= o2 +6%? (all cross terms are zero)

= 02 (1 + 6%

E(ee,)= E(n, +0ny,) (n, +0ny,)

= fo?




Py = (eey,) 002
(e)? o?2(1+6%)
-8
P = —_—
(1+6?)

E(eey) = E(n+ 0n,) (ny+ 9nt-k+l)

Py =0

ASE 3 ARMA(1.,1
e= ¢e, + n + On,
= ¢(ey+ ny) +n+ 6ny,

¢’ (eus+ n,) +n+ (¢+6)ny,

= ¢ley +n, + (0+¢)n, +¢(0+p)n, +@?(0+p)nst+. .+ o (NI

again for j => o,

e = n + (0+¢)n, + ¢(6+¢)n, +¢>(0+p)n, +..

E(e) = O

E(e)? = E(n, + (8+¢)n, +p(6+p)nyt+...)?

= 02 [ 1+ (0+¢)? +¢?(0+p)? +¢*(0+p)%+. ..

o2{ 1+ (0+¢)2 [ 1+ ¢* +¢* +¢° +...]}
= 02 { 1+ [(0+¢)%/(1-¢%) ]}

E(e)’= (1+ 6% +2¢0)0°

1-¢?

]
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E(ee, )= E(n, +(0+¢)n, +¢(0+p)n,+...) (n,y+ (0+p)n,+...)
= [ (0+¢)0? +@(0+¢)20™+ ¢ (0+¢)20%+...]
= o2(0+¢) [1 +p(0+p)+ ¢*(0+pp)+...]
= o2(0+¢) { 1 +p(0+p) [ 1+ ¢>+ ¢*+...]}
= o’(6+¢) { 1 +[¢(0+9)/(1~¢") ]}

= (1+¢0) (¢+8)a?

1-¢?
o = (1+¢0) (p+0)0* . (1-¢%)
1-¢? (1+ 6% +2¢0)0?

(1+¢0) (¢+6)
(1+ 6% +2¢40)

E(eey) = (-.-+ ¢ (0+p) Ny, +P*(0+) Nyyyye v o) (oo o ¥ny
+(p+0)n D (d+H0) N ne o L)

]

P (0+9) 02+ ¢ (0+9)2 o+ ¢“*2(0+9)? +...

¥ (0+9) %[ 1+ ¢ (p+0) +¢*(0+¢)? +...]
@1 (0+p)o? { 1 +p(e+0) [ 1+ ¢*+ ¢*+...]}

¢*1(0+¢)o { 1 +[op(p+8) /(1-¢*)1}
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o (") (1+0¢) (0+9¢)

1-¢?
px = o? (¢') (1+0¢) (0+9¢) . 1-¢?
1-¢? (1+ 62 +2¢0)02

= (1) (1+8¢) (0+9)
(1+ 6% +2¢0)

12.  The correlation between two random variables, in some cases, is due to the
correlation of these two variables to the same third variable. To adjust for this
correlation the partial autocorrelation function {(pacf) is used. The pacf essentially
measures the additional correlations between two lags after adjusting for the

intermediate lags.

13.  To calculate the sample pacf one can fit autoregressive models of increasing

order; the estimate of the last coefficient(¢) of each model is the sample pacf.

-1
r fjf_:, ¢k-1,i" k-

P
1 ‘E bp1, 7

j=1

®)

Model Estimation

14. From the identification stage a tentative ARIMA model is specified for the
data generating process on the basis of the estimated autocorrelation and partial

autocorrelation {Box and Jenkins, 1970). The following are some possible results:
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a. For an MA(q) process the autocorrelation Q, = O for k>q and the partial
autocorrelations taper off. To determine a cut off point to the
autocorrelation function the sample autocorrelations are used.

b. For an AR(p) the partial autocorrelations ¢, = O for k>p and the
autocorrelations taper off. A cutoff point of the partial autocorrelation
function may be determined by comparing the estimates with T, since (1/
T)*® is the approximate' standard deviation of the estimators ¢, for K>p.

c. If neither the autocorrelation nor the partial autocorrelations have a cutoff
point, an ARIMA model may be adequate. The AR and the MA degree have
to be inferred from the particular pattern of the autocorrelation and partial

autocorrelation.

15. Once the identification is completed, a non-linear least squares or a
maximum likelihood estimation based on the Marquardt Algorithm, is employed
(Box-Jenkins,1970,pp 504 - 505). A pure AR(1) process sometimes known as a
"random walk"” model can be estimated by linear methods. The non-linear
estimation whether by minimizing least squares or maximizing a likelihood function,
makes an appropriate computer software necessary to lessen the labour input and

computational time.

16. The next step after estimation is diagnostic checking. These tests are for
necessity, invertibility and sufficiency. Each parameter included in the model
should be statistically significant (necessary) and each factor must be invertible. In
addition, the residuals from the estimated models should be white noise (model
sufficiency).

17. The test for necessity is performed by examining the T-ratios for the
individual parameter estimates. Parameters with non-significant coefficients may
be deleted from the model in order to have a parsimonious model. Invertibility is
determined by extracting the roots from each factor in the model. All the roots

must lie outside of the unit circle.
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18. If one of the factors is non-invertible, then the model must be adjusted. The
appropriate adjustment is dictated by the type of the factor that is non-invertible.
For example, a non-invertible autoregressive factor usually indicates under-
differencing, while a non-invertible moving average factor may indicate over
differencing. A non-invertible moving average factor could also represent the
presence of a deterministic factor. Since the model fixup is not really clear-cut, the

overall model must be considered when adjusting for non-invertibility.

To illustrate consider the following examples:
i) ¢, =08 ¢, =-0.15
(1-0.8B + 0.16B% = (1-.56B)(1-.3B) =0
The characteristic roots in this case are all greater than one (i.e, they are outside
the unit circle) thus the stationarity condition is satisfied.
i) ¢, = 1.5 ¢, = -.b
(1-1.6B + 0.5B% = (1-B){1-0.5B)
This example has one root at 1 and consequently the stationarity condition is not

satisfied.

19. The residuals are tested for white noise by studying the autocorrelation and
partial autocorrelation of the residuals. Furthermore, a test statistics Q or
"portmanteau test" is performed on the residuals autocorrelations of all lags. If the
model is misspecified or inappropriately fitted, the Q test tends to be inflated (Box-
Jenkins, 1970; Vandaele, 1983).

Recall that p, = v Vo Yk 0,1,2,...
For an ARMA (p,q) process:

(p)Z, = (6)n, thus,
1+ a¢ +a,0°+...+a,0°1Z, = [1+ B0+ B,6°+...+B,6n,

Box and Jenkins (1970) provide the proof for the invertibility condition.
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If this process is invertible and the estimates are significant then the residuals are
estimated for white noise property:

n*, from [(¢)/ ()]

— T A A
Me = (Z'iaker NN

vk1,2,..
(ZTeoqn™y)?

According to Box and Pierce (1970):

T an=1 rk2 ~ sz—p-q
Ho: r, is white noise when n, is n~ (0,0%)

Model Forecasting

20. The forecasting function of the general multiplicative model (1) can be
expressed in different forms. For computational purpose, the difference equation

form is the most useful. Thus, at time t+ 1 the ARIMA maodel (1) may be written:

Zt«w= b 4 IZt+v-l to. Tmzu-v-m —atd-v _Hlaﬂ-v—l Tee _I[naﬂv—n (6)

where m=(p+s.P+d+s.D) and n=(q+s.Q); @(B)=¢,(B*)V'V°, is the general
autoregressive operator; 7(B) =6,(B)Oy(B) is the general moving average operator.
For example, if the ARIMA model is of order (0,1,1)(0,1,1),, the difference

equation that generates the observations Z,_,, is:

Z

e L1 Zpay-12 Ly 1319, ~04,,, 1 -Oa,,, 1,080, ;5 (62)

Standing at origin t, to make a forecast 2*,(v) of Z,,,., the conditional expectation

of (6) is taken at time t with the following assumptions:
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BAZ..))= 2,4y =<0 ; El(Z,) = Z%()), j>0

E(a,;;) =a,,,j=0 ; Edfa,.;=0,j>0
where E(Z, ;) is the conditional expectation of Z,,; taken at origin t. Thus, the
forecasts Z,(v) for each lead time are computed from previous observed Z’s,
previous forecasts of Z‘s and current and previous random shocks a‘s. The

unknown a‘s are replaced by zeroes.

21. In general, if the moving average operator 7(B) =8(B)©(B®)is of degree

(g +s.Q), the forecast equations for Z,(1),Z,(2),...,Z,(q+s.Q) will depend directly on
the a’s but forecasts at longer lead times will not. The latter will receive indirectly,
the impact of the a’s by means of the previous forecasts. In effect, Z,{(q+s.Q+1)

will depend on the (q+s.Q) previous Z, which in turn will depend on the a’s.

22. From the view point of studying the nature of the forecasts, it is important
to consider the explicit form of the forecasting function. For v>n=(q+s.Q), the
conditional expectation of (6) at time t is:

Z5(v)-p 25 (v-1)-. -, Z(v-m) =0 v>m
and the solution of this difference equation is:

Z7,(v) = bylt)fo(v) + b, " (V) +... +b,,"f Y v>n-m
This function is called the "eventual forecast function”, eventual because when

n>m, it supplies the forecasts only for lead times | >n-m.

23. In the above representation, f,(V), f,(V), ...f,(V) are functions of the lead
time V and in general they include polynomials, exponentials, sines and cosines,
and products of these functions. For a given origin t, the coefficients bj‘t’ are
constants applying for all lead time V but they change from one origin to the next,
adapting themselves to the particular part of the series being considered. It is
important to point out that it is the general autoregressive operator w(B) defined

above , which determines the mathematical form of the forecasts function, i.e., the
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nature of the f's. In other words, it determines whether the forecasting function is
to be a polynomial, a mixture of sines and cosines, a mixture of exponentials or

some combinations of these functions.

Integration
24. The original variable Z, and a differenced variable W, are linked

deterministically by the differencing operator (1-B).
W, = (1-B)¥Z,

This relationship between Z, and W, is very important because, after building an
ARIMA model for the stationary series W,, we often want to forecast the original
nonstationary series Z,.

Suppose d=1 then,

Z.= (1-B)"'W,

(1-B)! can be written as infinite series:

(1+B+B?+B%+...)

Z,= (1+B+B2+B3*+...)W,
=W, +W,, + W,+...
=1%_. W,

Since the Z’'s are sums of the W’s, we can get to Z by integrating.
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il. MULTIVARIATE TIME SERIES MODELLING

25. The multivariate time series model is also a three stage iterative operation of
identification, estimation (and diagnostic check) and forecasting. In multivariate
time series models the independent variable (a.k.a. input series) is prewhitened by
fitting a univariate ARIMA model. Similarly the dependent variable (output series)
is also "prewhitened” by fittihg the same AR and MA factors as the input series.

26. While in a univariate time series model the autocorrelation and partial
autocorrelation functions determine the appropriate factors for estimation, in a
multivariate model the crosscorrelation function is used. This function determines
the interrelationship between the input and output series. A typical multivariate

time series model is specified symbolically as:

B *
V’Y,=ao+M(x,_M)V‘1 *.. +9—(BlA, (12)
3,(B) $(B)
where:
Y, is the dependent variable at time t and V" is the ordinary difference
operator,
a, denotes the deterministic trend,
X, is the independent input series and y,é represent the numerator and

denominator factor(s) of the independent series, particularly, y
represents polynomial lagged independent variables while & represents
lagged polynomial of the dependent variable,

B denotes the backward operator, i.e BZ,=Z, ,; B*Z,=2Z,, while b

represents the pure delay or lag on Xs,
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A, is a random process with ¢(B) and ®(B) representing the stationary
autoregressive and moving average (polynomials in B) operators. The
#7 indicates that the error term may need to be differenced to make it

stationary.

27. For a single input variable equation, equation (12) can be rewritten as:

¢,(B)Yt BB, , B (13)
8 (B) 6,(B) ¢,(B)

or denoting the left hand side as B, and the input series as q,

B,=w(®)e,+e,

Taking the expectation operator across and assuming @ and € are independent:

Ele, B 1=w.E(a, o) +w E(a,_ ¢,  +..+E(o k&P
C,p(=wC, L-0+0
C,s®
C. (b

(14)
w,=

Thus by substituting sample values, the impulse response weight can be derived as
the crosscorrelation between a and 8 multiplied by the standard deviation of the 6

series and divided by the standard deviation of the a series.

28. Like the univariate case, it is possible to use the Box-Pierce Chi-square test
to determine if the set of autocorrelations from the residuals are significantly
different from zero. The degrees of freedom for the test depend on the values of

the time lag in the independent series, the parameter associated with the impact of
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the independent series on the dependent and finally the parameter associated with

the impact of past history of the dependent variable on itself.

Qutlier Detection

29. Time series data are often influenced by isolated events such as strikes,
earthquakes and etc. Often such events are modelled as "dummy" variables with a
series of zeros and one(s) for the time period(s) of the isolated event. Since most
of these events may or may not be identifiable to the modeller, a theory-free
detection algorithm can also be applied. The algorithm begins by first fitting a
univariate ARIMA model to the series divided by a series of regressions at each
time period to test the hypothesis that there is an intervention. After identifying an
outlier the residuals are modified and the test will resume until all outliers are

uncovered.

30. The automatic outlier detection algorithm is obviously better than the theory-
based method for cases when the modeller does not have apriori knowledge of
when the event may have occurred. In addition, if the outlier causes a structural
shift (such as institutional legislations) and if the impact of the event takes a longer
time lag to affect the behaviour, then the modeller may bias the effect of the
outlier by choosing the day the event occurred as the break in the series. On the
other hand, theory-free methods have the "potential for finding spurious
significance" during the testing of the hypothesis (AFS, 1986;1990).

31. Some forecasters (see AFS manual, 1990) argue that fitting a univariate
ARIMA model does not necessarily imply that the series is homogeneous (the error
term of the series is random about a constant mean). In such situations, the
identification of the outliers become dubious due to the recursive process. The
suggested solution is the testing of a more rigorous specification, i.e., the mean of

of the errors must be near zero for all time sections (AFS, 1990).
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Ill. SOME NOTES ON ECONOMETRIC AND TIME SERIES MODELS.

32. The main advantages of econometric and multivariate time series (MTS)
models are their ability to deal with interdependencies. Often econometric models
are used to assess the impact of various policy scenarios on aggregate economic
variables such as the GDP and investment. Likewise a system of equations
designed to explain voluntary attrition may also provide a good simulation exercise

on various economic and military policies on attrition.

33. However, if the objective is forecasting rather than explaining, such
complicated models may not provide as good a forecast given the time and
resources cost of building such models. Furthermore, the specification and
identification of a multi-variable system entails systematic errors that may be
difficult to detect. As summarized in Solomon {1991), various economists and
econometricians have criticised large scale econometric models as restrictive (when
setting coefficients), |

arbitrary (during the sorting of variables into exogenous ar{d endogenous
categories), and limited (when specifying and testing the orders of serial correlation

and cross serial correlation of the disturbance terms).

34. For example, the test statistics used to examine serial correlations of the
error terms are for first-order autocorrelation, a common but not necessarily the
only order of autocorrelation found in economic time series. As shown in Solomon
(1991), temporal aggregation can cause higher order autoregressive or moving
average processes on any time series with white noise or first order error
component due to aggregation of data into larger time intervals. For illustration
assume a simple one equation with a lagged dependent variable and a white noise

random error.

Y, = a + By., +e
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e = n, (white noise)
Substituting the error term
Y, = B, + (@ +aB) + (n,+8n,,)

Yor = Yy + Yuq fort=2, 4,6 ...
= B (Y2 +Yoia) + 2a(1+8)+ n, +(1+8)n,, +Bn,,
= B2 + 2a(14+8) + e,

€y= n, + (1+8)n., + Bn,,

E(e?,,)= 01 + (1+8)% +87]

E(e,@,:.0) = Bo?

E(e,@5..0= 0 fors= 2,3, 4,...
Apart from a second order moving average error term, the coefficient of the lagged
dependent variable is squared. If the theoretical specification of the lagged variable
was negative initially, the temporal aggregation may incorrectly specify a positive

relationship instead.

35. In multivariate time series models the dynamic relationship between
dependent and independent variables are examined more fully than is available in
most regression based econometric models. Furthermore, unlike the univariate
time series models, multivariate models can provide us with information regarding
the effect of certain policy shock such as government expenditure on the forecasts
beyond the sample period. Although the MTS class of models are quite broad,
they are restricted to stationary time series or those series that exhibit stationarity
after differencing. Since the prediction of future values are constrained to be linear
functions of the observations, we also have to assume linearity of the models.
Such restriction, often sufficient approximation of reality, does not cover every
aspect of real life situation and thus a broader class of models should be

entertained.
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36. The assumption of linearity is often relaxed in most case studies by applying
the Box-Cox transformation to the model. Since stationarity is an important factor
in MTS modelling, increasing trends are usually differenced. Such trends may be
caused by systematic components that consequently, should be explained

appropriately through some explicit economic theory.

37. While the statistical tools such as the autocorrelation, crosscorrelation and
partial autocorrelation functions help the researcher in choosing a tentative model
for estimation and forecasting, most of the time he or she has to rely on personal
(subjective) judgements. Unless the researcher has extensive knowledge and
experience in time series modelling, such judgements can be inaccurate and may
lead to inferior forecast values. It is desirable, therefore, for the researcher to seek
expert opinion from other researchers who have done more work on that particular
time series or related data. Furthermore, fitting a series of simpie ARIMA and
seasonal ARIMA models and selecting the one with desirable statistics is a good

starting point if the identification stage gives inadequate information.

38. As verified by the preceding and other studies, time series models produce
relatively superior forecast values than competing regression-based models.
Subsequently applications of time series models have extended into econometric
modelling realms as substitutes for large econometric models (such as Vector
Autoregressive models) or as a complement to regression models through the
modelling of the stochastic term (Pindyck and Rubenfeld,1981). Both of these
applications require extensive theoretical exposition and empirical verification to
include in this paper, thus, interested readers are referred to Pindyck and Rubenfeld
(1981), Newbold (1983) and Priestley {1988) for a detailed discussion.
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IV. DATA SUMMARY

39. The following is the listing of the variables presented in the subsequent

pages.:

Year

ur

vaoff
vancm
RGDP
DRGDP
RGDPMAN
RGDPCOM
RGDPBSR
EMPMAN
EMPTCOM
EMPSERV
indprd

cur

awhm
lincm

linct
ur1b24

ENGINEE
OTHERS
SPECIALI
AIR OPS
COMBAT
COMMUNI
LOGISTIC
MIL-ENG
SEA OPS

Source:

Calendar year
The unemployment rate
Voluntary attrition (officers)

 Voluntary attrition (NCMs)

Real (constant $) GDP

Growth in real GDP

Real GDP in the manufacturing sector
Real GDP in the communication sector
Real GDP in the business service sector
Employment in the manufacturing sector
Employment in the communication and transportation sector
Employment in the service sector
Industrial production

Capacity utilization rates (manufacturing)
Average weekly hours (manufacturing)
Labour income (manufacturing)

Labour income growth

Unemployment rate (15-24 year olds)

Engineering group GENERAL Generals
(officers) OPERATI Operational (officers)
Other occupations SUPPORT Support (Officers)

" (officers) '
Specialists
(officers)

Air operations (NCMs) AIR TECH Air technicians (NCMs)
Combat pers. (NCMs) DENTAL Dental assistants (NCMs)

Communications (NCMs) LEME Land electrical and
Mechanical eng.(NCMs)
Logistics (NCMs) MEDICAL Medical related (NCMs)

Military Engineer (NCMs) OTHERS Other Occ. (NCMs)
Sea operations (NCMs) SUPPORT  Support (NCMs)

Economic data from the CANSIM database, Statistics Canada (951 8116)
Attrition statistics from DEMR



Year
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992

ur

5.5
5.3
6.9
7.1
8.1
8.3
7.4
7.5
7.5
11
11.8
11.2
10.5
9.5
8.8
7.8
7.5
8.1
10.3
11.3

vaoff

76
751
675
493
518
448
474
502

555

375
255
330
349
391
445
542
607
569
464
432

vancm

516
5190
4973
3857
3698
3327
4027
4432
4019
2417
1445
2000
2415
2311
2746
3344
3756
3150
2636
1811

-24 -

RGDP

341235
350113
371688
385122
402737
418328
424537
440127
425970
439448
467167
489437
505666
526730
552958
566486
565576
556029
560048

DRGDP
326848 .

4.40174
2.601726
6.162296
3.614322
4.573875
3.871261
1.484242
3.672236

-3.21657
3.164073
6.307686
4767032
3.315851
4.165595
4.979401
2.446479

-0.16064

-1.68801
0.722804

RGDPMAN RGDPCOM

67865
69907
65250
70037
72578
75884
78731
75203
77972
67921
72311
81622
86218
86849
91025
95643
95830
90947
84929
85362

9295
5980
6748
7430
7884
8638
9486
10379
11186
11177
11460
12016
12700
13311
14204
15299
16964
18287
19025
19464



Year
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992

-25-

RGDPBSR EMPMAN EMPTCOM EMPSERYV indprd

64994
68844
71494
74681
76700
79507
81232
85589
89960
89843
90105
93784
96303
100363
104254
109588
113709
115853
114454
114401

1927
1978
1871
1921
1888
1956
2071
211

2124

1928
1879
1954
1960
1989
2018
2104
2126
2001
1865
1788

775
791
812
824
819
859
903
906
911
882
865
852
876
891
899
904
961
951
916
922

2290
2389
2520
2573
2695
2812
2954
3096
3262
3273
3395
3458
3630
3765
3918
4062
4150
4299
4376
4408

95741.6
97602.7
90428.3
96505.6
99750.2
103213.5
108195.9
104513.6
106673.8
96204.4
102435.6
114882.7
121272.9
120356.4
126226
132918.4
132729.4
128551.3
123847.8
124356.1

cur

86.8
85.8
77.5
80.6
81.6
84.2
85.4
79.9
79.9
68.2
71.6
79.7
83.1
82.2
83.3
83.1
81.1
77.3
73.7
74.8

awhm

39.56
38.83
38.56
38.65
38.65
38.69
38.79

38.5
38.56

37.6
38.24

38.4
38.62
38.41
38.71
38.91
38.68
38.23
37.82
38.25



Year
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992

lincm
15669
18211
20038
22848
24770
27459
31114
34341
38835
38944
40860
44498
47969
50814
54397
59131
62702
62377
60744
60653

linct

15.3
19.3
16.7
15.9
10.9
8.9
12.6
13

15.5

6.8
4.8
1.7
7.8
6.7
8.8
9.7
7.9
5.3
2.8
2.7

ur1524

9.6
9.3
12
12.7
14.4
14.5
12.9
13.2
13.2
18.7
19.8
17.8
16.4
15.1
13.7
12
11.3
12.8
16.2
17.8
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ENGINEE GENERAL OPERATI

16
146
125

83

71

83

78
117
171
113

73

80

87

83

98
130
134
126
116
137

1
9
10
10

O=m =200 22000 2aaNWN 0

35
263
191
120
100
140
139
148
1563

88

43

79

88
120
160
187
209
198
142
103

OTHERS
5
151
136
125
169
72
73
44
56
26
27
32
22
32
27
53
37
35
27
14




Year
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992

-27.

SPECIALI SUPPORT AIROPS AIRTECH COMBAT COMMUNI DENTAL

6
104
115

86
92
81
107
110
97
99
81
101
81
89
96
96
118
99
92
94

13
78
98
69
78
70
74
81

77

48
31
38
71
66
63
76
109
110
86
84

17
161
120
108

86

90
111
110
110

56

44

36

82

53

75

94

88

81

65

57

61
489
559
416
464
462
619
612
529
287
151
210
313
356
374
440
532
374
281

94

34
926
936
768
667
519
656
802
661
379
219
408
402
348
472
667
613
531
569
466

30
514
529
374
358
273
294
359
365
202
123
158
245
221
235
291
359
289
242
149

6
19
10
21
15
13
17
22
18
16
11
11
17
12
17
35
26
30
19
13




Year
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992

LEME

23
199
238
221
183
175
219
255
220
118

66
112
139
117
115
155
209
163
149

97
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LOGISTIC MEDICAL MIL - ENG OTHERS SEAOPS SUPPORT

151
916
805
667
664
612
691
706
669

435

289
364
408
392
472
571
639
507
421
278

9
129
140

80
95
84
100
108
99
61
52
72
78
61
110
114
146
80
93
77

20
247
285
246
226
175
223
251
255
165

92
105
128
121
125
150
202
226
135

71

95
881
680
447
485
485
558
626
507
359
159
163

91

96

56

75

78

74

38

31

8
183
172
160
170
165
223
236
254
126

91
169
275
280
404
410
520
476
344
265

62
526
499
349
285
274
316
345
332
213
148
192
237
254
291
342
344
319
280
213



Model: MODEL1
Dependent Variable: ENG

Source

Model
Error
C Total

Root MSE

Dep Mean
C.v.

Variable DF

INTERCEP 1
LUR1524 1
TTRND 1

Durbin-Watson D
(For Number of Obs.)
1st Order Autocorrelation

Model: MODEL2
Dependent Variable: OPN

Source

Model
Error
C Total

Root MSE
Dep Mean

Variable DF

INTERCEP 1
LUR1524 T
CGDPCOM 1
TTRND 1

burbin-Watson D
(For Number of Obs,)
1st Order Autocorrelation

-29 .-

Analysis of Variance

Sum of Mean
DF Squares Square F value Prob>F
2 5966.58160  2983.29080 6.051 0.0118
15 7395.91840 493.06123
17 13362.50000
22.20498 R-square 0.4465
105.83333 Adj R-sq 0.3727
20.98109
Parameter Estimates
Parameter Standard T for HO:
Estimate Error  Parameter=0 Prob > IT!
164.502389  28.99454152 5.674 0.0001
-6.068198 2.05564034 -2.952 0.0099
2.631830 1.04242249 2.525 0.0233
1.534
18
0.195
Analysis of Variance
sum of Mean
DF Squares Square F value Prob>F
3 32268.92590 10756.30863 51.674 0.0601
14 2914.18521 208.15609
17 35183.11111
14.42762 R-square 0.9172
133.77778 Adj R-sq 0.8994
10.78476
Parameter Estimates
Parameter Standard T for HO:
Estimate Error  Parameter=0 Prob > |T}
138.559563  30.31469263 4.571 0.0004
-8.265275 1.56849524 -5.270 0.0001
906.530343 135.40307091 6.695 0.0001
4.846030 0.72830993 6.654 0.0001
1.682
18
0.120




Model: MODEL3
Dependent Variable: OTHR

Source

Model
Error
C Total

Root MSE
Dep Mean
c.vV.

Variable DF

INTERCEP 1
LUR1524 1
CGDPM 1
TTRND 1

Durbin-Watson D
(For Number of Obs.)
1st Order Autocorreiation

Model: MODEL4
Dependent Variable: SPEC

Source

Model
Error
C Total

Root 'MSE

Dep Mean
C.V.

Variable DF

INTERCEP 1
LUR1524 1
TTRND 1

Durbin-Watson D
(For Number of Obs.)
1st Order Autocorrelation

-30-

Analysis of Variance

Sum of Mean
DF Squares Square F value Prob>F
3 26073.97477  8691.32492 17.761 0.0001
1%  6850.96968 489.35498
17 32924 .94444
22.12137 R-square 0.7919
55 .94444 Adj R-sq 0.7473
39.54167
Parameter Estimates
Parameter Standard T for HO:

Estimate Error  Parameter=0 Prob > T}
246.865595  35.34621138 6.984 0.0001
-10.276662 2.73831955 -3.753 0.0021
283.043889 114.61462543 2.470 0.0270

-4.615143 1.10570917 -4.174 0.0009
1.958
18
-0.020
Analysis of Variance
Sum of Mean
DF Squares Square F Value Prob>F
2 532.09620 266.04810 2.605 0.1069
15 1531.%0380 102.12692
17  2064.00000
10.10579 R-square 0.2578
96.33333 Adj R-sq 0.1588
10.49044
Parameter Estimates
Parameter Standard T for HO:

Estimate Error Parameter=0 Prob > |T|
124.251741  13.19580647 9.416 0.0001

-2.133804 0.93554961 -2.281 0.0376

0.231336 0.474462052 0.488 0.6329

2.308

18

-0.187
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Model: MODELS
Dependent Varijable: SUPOF

Analysis of Variance

sum of Mean
Source DF Squares Square F value Prob>F
Model 1 4069.24269  4069.24269 19.120 0.0005
Error 16  3405.25731 212.82858
C Total 17  7474.50000
Root MSE 14.58865 R-square 0.5444
Dep Mean 73.83333 Adj R-sq 0.5159
C.vV. 19.75889
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error  Parameter=0 Prob > |T}
INTERCEP 1 155.112778  18.90363688 8.205 0.0001
LUR1524 1 -5.714961 1.30698754 -4.373 0.0005
Durbin-Watson D 1.020
(For Number of Obs.) 18
1st Order Autocorrelation 0.420
Model : MODELé6
NOTE: No intercept in model. R-square is redefined.
Dependent Variable: AIROPS
Analysis of Variance
Sum of Mean
Source DF Squares Square F Value Prob>f
Model 3 128157.91904 42719.30635 310.448 0.0001
Error 15 2064.08096 137.60540
U Total 18 130222.00000
Root MSE 11.73053 R-square 0.9841
Dep Mean 81.44444 Adj R-sq 0.9810
V. 14.40311
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error  Parameter=0 Prob > |T}
LUR 1 -9.269821 1.41963514 -6.530 0.0001
DRGDP 1 4.039473 1.15746390 3.490 0.0033
LCUR 1 1.872913 0.14835326 12.625 0.0001
Durbin-Watson D 2.279
(For Number of Obs.) 18
1st Order Autocorrelation -0.173



Model: MODEL7
Dependent Variable: AIRTECH

Source

Model
Error
C Total

Root MSE
Dep Mean
c.v.

Variable DF

INTERCEP 1
DRGDP 1
LUR 1
LCUR 1

Durbin-Watson D
(For Number of Obs.)
1st Order Autocorrelation

Model: MODEL8
Dependent Variable: ARMS

Source

Modetl
Error
C Total

Root MSE

Dep Mean
c.V.

Variable DF

INTERCEP 1
LUR 1
DRGDP 1

Durbin-Watson D
(For Number of Obs.)
1st Order Autocorrelation
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Analysis of Variance

Sum of Mean
DF Squares Square F Value Prob>F
3 331881.21855 110627.07285 26.343 0.0001

14 58793.72589 4199.55185
17 390674 .94444

64.80395 R-square 0.8495
392.94444 Adj R-sq 0.8173
16.49189

Parameter Estimates

Parameter Standard T for HO:
Estimate Error  Parameter=0 Prob > T}
-883.819204 401.04784122 -2.204 0.0448
19.898203 6.48678968 3.067 0.0084
-36.216910  11.78426554 -3.073 0.0083
19.170057 4.18616188 4.579 0.0004
1.171
18
0.332

Analysis of variance

sum of Mean
DF Squares Square F value Prob>F
2 424306.56362 212153.28181 25.406 0.0001

15 125257.93638  8350.52909
17 549564 .50000

91.38123 R-square 0.7721
560.16667 Adj R-sq 0.76417
16.31322

Parameter Estimates

Parameter Standard T for HO:
Estimate Error Parameter=0 Prob > |T]
1286.890998 110.71756470 11.623 0.0001
-93.137310  13.16883583 -7.073 0.0001
25.953037 9.03017848 2.874 0.0116
1.523
18
0.159




Model ; MODEL9
Dependent Variable: COMM

-33-

Analysis of vVariance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 3 147710.97448 49236.99149 33.991 0.0001
Error 14 20279.46997 1448.53357
C Total 17 167990.44444
Root MSE 38.05961 R-square 0.8793
Dep Mean 281.44444 Adj R-sq 0.8534
C.vV. 13.52295
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T}
INTERCEP 1 247.779722 235.53691974 1.052 0.3106
DRGDP 1 14.186627 3.80971621 3.724 0.0023
LUR 1 -45.562191 6.92094389 -6.583 0.0001
LCUR 1 4.818127 2.45854877 1.960 0.0702
Durbin-Watson D 1.658
(For Number of Obs.) 18
1st Order Autocorrelation 0.041
Model : MODEL10
Dependent Variable: DENT
Analysis of Variance
Sum of Mean
Source DF Squares Square F Value Prob>F
Model 2 303.78618 151.89309 4.716 0.0258
Error 15 483.15827 32.21055
C Total 17 786.94444
Root MSE 5.67543 R-square 0.3860
Dep Mean 17.94444 Adj R-sq 0.3042
V. 31.62781
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error  Parameter=0 Prob > 1T}
INTERCEP 1 28.197333 6.88487791 4.096 0.0010
TTRND 1 0.814959 0.29276799 2.784 0.0139
LUR 1 -2.190034 0.88991463 -2.461 0.0265
Durbin-Watson D 1.785
(For Number of Obs.) 18

1st Order Autocorrelation

-0.031



Model : MODEL11
Dependent Variable: LEMC

Source

Model
Error
C Total

Root MSE

Dep Mean
Cc.v.

Variable OF

INTERCEP 1
DRGDP 1
LUR 1

Durbin-Watson D
(For Number of Obs.)
1st Order Autocorrelation

Model: MODEL12
Dependent Variable: LOGIS

Source

Model
Error
C Total

Root MSE
Dep Mean

Variable DF

INTERCEP
LUR

LCUR
DRGDP

- wd ok -

Durbin-Watson D
(For Number of Obs.)
1st Order Autocorrelation
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Analysis of Variance

Sum of Mean
DF Squares Square F Value Prob>F
2 36525.19190 18262.59595 20.137 0.0001
15 13603.75254 906.91684
17 50128.94444
30.11506 R-square 0.7286
163.94444 Ad] R-sq 0.6924
18.36906
Parameter Estimates
Parameter Standard T for HO:

Estimate Error Parameter=0 Prob > |T}
375.534844  36.48742876 10.292 0.0001

7.962959 2.97593245 2.676 0.0173
-27.251070 4.33984400 -6.279 0.0001

1.278
18
0.354
Analysis of Variance
Sum of Mean
DF Squares Square F value Prob>F
3 390048.90297 130016.30099 68.599 0.0001
14 26534.20814  1895.30058
17 416583.11111
43.53505 R-square 0.9363
532.77778 Adj R-sq 6.9227
8.17133
Parameter Estimates
Parameter Standard T for HO:

Estimate Error  Parameter=0 Prob > T}
332.672856 269.42243510 1.235 0.2372
-70.077310 7.91662538 -8.852 0.0001

9.091578 2.81224785 3.233 0.0060

26.786837 4 ,35780097 6.147 0.0001
1.241
18
0.369




Model: MODEL13
Dependent Variable: MED -

Source

Model
Error
C Total

Root MSE

Dep Mean
C.V.

Variable DF

INTERCEP 1
LUR 1

Durbin-Watson D
(For Number of Obs.)
1st Order Autocorrelation

Model: MODEL14 )
Dependent Variable: MENG

Source
Model
Error
C Total

Root MSE

Dep Mean

C.V.

Variable DF

INTERCEP 1
LUR 1
DRGDP 1

Durbin-Watson D
(For Number of Obs.)
1st Order Autocorrelation
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Analysis of Variance

Sum of Mean
DF Squares Square F Value Prob>F
1 3435.91889  3435.91889 7.173 0.0165
16  7664.08111 479.00507
17 11100.00000
21.88618 R-square 0.3095
91.66667 Adj R-sq 0.2664
23.87584
Parameter Estimates
Parameter Standard T for HO:
Estimate Error  Parameter=0 Prob > T}
161.190914  26.46642368 6.090 0.0001
-8.094673 3.02237199 -2.678 0.0165
1.717
18
0.111
Analysis of Variance
Sum of Mean
DF Squares Square F Value Prob>F
2 59046.76565 29523.38282 40.234 0.0001
15 11006.84546 733.78970
17 70053.61111
27.08855 R-square 0.8429
176.72222 Adj R-sq 0.821%9
15.32832
Parameter Estimates
Parameter Standard T for HO:

Estimate Error  Parameter=0 Prob > {T}
456.653972  32.82051058 13.914 0.0001
-35.009624 3.90369782 -8.968 0.0001

7.358989 2.67685682 2.749 0.0149

1.295

18

0.309




Model: MODEL15
Dependent Variable: NCMOTH

Source
Model
Error
C Total
Root MSE
Dep Mean
C.V.
Variable DF
INTERCEP 1
LUR 1
TTRND 1

Durbin-Watson D
(For Number of Obs.)
1st Order Autocorrelation

Model: MODEL16
Dependent Variable: SEAOPS

Source

Model
Error
C Total

Root MSE
Dep Mean

Variable DF

INTERCEP 1
DRGDP 1
LUR 1

Durbin-Watson D
(For Number of Obs.)
1st Order Autocorrelation
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Analysis of Variance

Sum of Mean
DF Squares Square F value Prob>Ff
2 810267.28155 405133.64078 55.096 0.0001
15 110297.82956  7353.18864
17 920565.11111
85.75074 R-square 0.8802
278.22222 Adj R-sq 0.8642
30.82095
Parameter Estimates
Parameter Standard T for HO:

Estimate Error Parameter=0 Prob > |T|
954.700963 104.02435215 9.178 0.0001
-37.793211  13.44581468 -2.81 0.0132
-33.512100 4,42346271 -7.576 0.0001

0.844
18
0.530
Analysis of Variance
Sum of Mean
DF Squares Square F value Prob>F
2 4485.39963 2242.69981 0.133 0.8761
15 252160.60037 16810.70669
17 256646.00000
129.65611 R-square 0.0175
263.33333 Adj R-sq -0.1135
49.23650
Parameter Estimates
Parameter Standard T for HO:

Estimate Error  Parameter=0 Prob > |T}

275.099879 157.09143732 1.751 0.1003

-6.470659 12.81245411 -0.505 0.6209

0.755536  18.68458138 0.040 0.9683
0.424
18
0.772
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Model: MODEL17
Dependent Variable: SUPNCM

Analysis of Variance

Sum of Mean

Source DF Squares Square F value Prob>F
Model 4 88187.72772 22046.93193 16.856 0.0001
Error 13 17003.88339 1307.99103
C Total 17 105191.61111

Root MSE 36.16616 R-square 0.8384

Dep Mean 290.72222 Adj R-sq 0.7886

c.v. 12.44011

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error  Parameter=0 Prob > |T]
INTERCEP 1 191.171864 255.63577736 0.748 0.4679
DRGDP 1 11.030566 3.99987850 2.758 0.0163
LUR 1 -40.523287 10.70050208 ~3.787 0.0023
LINCT 1 -4.750628 3.53820055 -1.343 0.2024
LCUR 1 5.810717 2.34989364 2.473 0.0280
burbin-Watson D 0.913
(For Number of Obs.) 18

1st Order Autocorrelation 0.313
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