
 
 

 
 
Regression versus Box-Jenkins    
(Time Series Analysis) Case Study  
 
 
A. Regression versus Multivariate 
Box-Jenkins     

If you are going to analyze time series 
data perhaps this discussion will be of 
help. Regression was originally 
developed for cross-sectional data but 
Statisticians / Economists have been 
applying it (mostly incorrectly) to 
chronological or longitudinal data with 
little regard for the Gaussian 
assumptions.  

 

For starters... 

Following is a brief introduction to time 
series analysis  

Time series = a sequence of 
observations taken on a variable or 
multiple variables at successive points 
in time.  

 

 

Objectives of time series analysis:  

1. To understand the structure of the 
time series (how it depends on time, 
itself, and other time series variables)  

2. To forecast/predict future values of 
the time series  

What is wrong with using regression for 
modeling time series?  

* Perhaps nothing. The test is whether 
the residuals satisfy the regression 
assumptions: linearity, constant 
variance, independence, and (if 
necessary) normality. It is important to 
test for Pulses or one-time unusual 
values and to either adjust the data or 
to incorporate a Pulse Intervention 
variable to account for the identified 
anomaly.  

Unusual values can often arise 
Seasonally, thus one has to identify and 
incorporate Seasonal Intervention 
variables.  

Unusual values can often arise at 
successive points in time earmarking 
the need for either a Level Shift 
Intervention to deal with the proven 
mean shift in the residuals.  

* Often, time series analyzed by 
regression suffer from auto-correlated 
residuals. In practice, positive 
autocorrelation seems to occur much 
more frequently than negative.  

* Positively auto-correlated residuals 
make regression tests more significant 
than they should be and confidence 
intervals too narrow; negatively auto-
correlated residuals do the reverse.  
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* In some time series regression models, 
autocorrelation makes biased estimates, 
where the bias cannot be fixed no 
matter how many data points or 
observations that you have.  

To use regression methods on time 
series data, first plot the data over time. 
Study the plot for evidence of trend and 
seasonality. Use numerical tests for 
autocorrelation, if not apparent from 
the plot.  

* Trend can be dealt with by using 
functions of time as predictors. 
Sometimes we have multiple trends and 
the trick is to identify the beginning and 
end periods for each of the trends.  

* Seasonality can be dealt with by using 
seasonal indicators (Seasonal Pulses) as 
predictors or by allowing specific auto-
dependence or auto-projection such 
that the historical values (Y(t-s)) are 
used to predict Y(t)  

* Autocorrelation can be dealt with by 
using lags of the response variable Y as 
predictors.  

* Run the regression and diagnose how 
well the regression assumptions are 
met.  

* The Residuals should have 
approximately the same variance  
otherwise some form of "weighted" 
analysis might be needed.  

* The model form/parameters should be 
invariant i.e. unchanging over time. If 
not then we perhaps have too much 
data and need to determine at what 
points in time the model form or 
parameters changed.  

Problems and Opportunities 

* 1. How to determine the temporal 
relationship for each input series, i.e. is 
the relationship contemporaneous, lead 
or lag or some combination? How to 
identify the form of a multi-input 
transfer function without assuming 
independence of the inputs.)  

• 2. How to determine the arima 
or autoregressive model for the 
noise structure reflecting 
omitted variables.  

For example if the model is 

 y(t)=3*x(t) + 2*z(t) + a(t) 

and you omit z(t) from your equation 

y(t)=3*x(t) + e(t) 

where e(t)=2*z(t) + a(t) thus the auto-
regressive nature of e(t) is a look-a-like 
for z(t). 

• 3. How to do this in a robust 
manner where pulses, seasonal 
pulses, level shifts and local time 
trends are identified and 
incorporated.  

e.g. 

 

 

 2 



 

 

 

 

A very natural question arises in the 
selection and utilization of models. 
One asks, "Why not use simple models 
that provide uncomplicated solutions?" 
The answer is very straightforward, "Use 
enough complexity to deal with the 
problem and not an ounce more". 
Restated, let the data speak and 
validate all assumptions underlying the 
model. Don't assume a simple model 
will adequately describe the data. Use 
identification/validation schemes to 
identify the model. 
  
A transfer function can be expressed as 
a lagged auto-regression in all variables 
in the model. AUTOBOX reports this 
form so users can go directly to 
spreadsheets for the purposes that you 
require. Care should be taken to deal 
with Gaussian violations such as 
Outliers (pulses), Level Shifts, Seasonal 
Pulses, Local time trends, changes in 
variance, changes in parameters, 
changes in models ...... just to name a 
few .. 
 
It has been said that a picture is worth 
a thousand words thus two pictures 
should be worth two thousand. 
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In teaching regression, I have found 
that if you ask the students to “shuffle 
the deck” or to re-sequence the Time 
Series Data and ask the question “Do 
the estimated parameters change?” you 
get interesting results. 

 

Most students think the ordinary 
regression coefficients will change or at 
least they hope so! The truth is that the 
answers (the model coefficients) do not 
change as a result of the re-sequencing.  

This illustrates the concept of 
minimizing the error sum of squares 
irrespective of the order. If that 
concerns you then you should be more 
interested in time series analysis than 
you may currently be. 

 

Consider bivariate SAT Scores data on 
15 students: 

 

 

The results prior to interchanging are: 
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Results after interchanging: 

 

 

 

 

 

 

 

If you ask a forecaster, “Do you think 
the past causes the future?” They will 
nearly always say “No”. Having said that 
they normally proceed to simply use the 
past values to project the future.  

Autoprojective tools or models are 
surrogates for omitted variables. An 
ARIMA model is the ultimate case of an 
omitted variable or sets of variables. In 
most cases, as long as true cause 
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variables don't change, history is 
prologue. However, one should always 
try to collect and use information or 
data for the cause variables or potential 
cause variables. The second approach 
can be contrasted to the former by 
referring to autoprojective schemes as 
"rear-window driving" while causative 
models or approaches are "front and 
rear-window driving" because one often 
has good estimates of future values of 
the cause variables (price, promotion 
schedule, occurrence of holidays, 
competitive price, etc. ) 

The past of the series becomes a proxy 
for an omitted stochastic series. 

  This can be easily illustrated as 
follows; 

If y(t)=f[x(t)] and 

x(t)=g[x(t-1)] for example then by 
substitution 

y(t)=h[x(t-1)] but since y(t-1)=f[x(t-1)] we 
have 

y(t)=v[y(t-1)] 

Some well-intentioned practitioners 
cleanse their data prior to model 
building throwing out data driven by 
events and even the onset of new 
seasonal patterns. The data that was 
cleansed often reflects the impact of 
omitted causal variables and that data 
should be treated with event variables 
(either stochastic or fixed   that are 
known a-priori and omitted stochastic 
series (lurking variables) and newly 
found event variables that are 
discovered via intervention detection. 
Suffice it to say that the history of the 
series when used is a proxy for omitted 
variables. 

 

 

 

For example if the following model is 
appropriate 

 yt = *xt + *zt  + 1*xt-1 +  C1*Lt=t1 + 
D1* zt-1 

and you incorrectly assume                     
yt =  *xt + *zt   .  

The estimates of  are biased. 
Furthermore the tests of significance 
are meaningless as there will be 
autoregressive structure in the error 
term and a non-constant error mean. 

 

Ordinary regression assumes a certain 
structure regarding the relationship 
between so-called exogenous or input 
series that may not arise when dealing 
with time series data. The assumed 
model is 

yt = *xt + *zt     

where z is a normal ( independent and 
identically distributed variable) this also 
implies that z can not be predicted from 
the past of x. It is crucial that one 
recognize that for standard 
identification schemes to be effective all 
variables have to be stationary and free 
of autoregressive structure. 
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For example one might need lags of the 
z variable or to include perhaps a lag 
effect on the error term or a Level Shift, 
Local Time Trend, Seasonal Pulse or a 
Pulse Variable to reflect unspecified 
Deterministic Structure leading to for 
example.  

yt = *xt + *zt  + 1*xt-1 +  C1*Lt=t1 + D1* 
zt-1 

As we will explore Box-Jenkins methods 
allow for the identification and 
incorporation of powerful augmentation 
strategies, customized for each problem 
which extract information from not only 
the past but information in leads, 
contemporaneous structure and lag 
structures in suggested X’s and 
information in the errors which reflect 
systematic patterns and newly found 
Intervention variables reflecting 
previously unknown deterministic 
impacts. 

There are three components to a 
forecasting model which should be 
carefully selected and combined (if 
necessary). It is important to note that 
these three components have to be 
searched simultaneously as one 
component can often have similar 
characteristics to another. The three 
components are: 

1. history of the series of interest 
2. data on auxiliary or supporting 

possible cause variables 
3. Pulses, Level Shifts, Seasonal 

Pulses or Local Time Trends 

The following lays out a general 
approach to Time Series but doesn’t 
point to the pitfalls that await the 
modeler. Most business forecasting 
problems could be substituted here 
without loss of generality. 

Distributed lags analysis is a specialized 
technique for examining the 
relationships between variables that 
involve some delay. For example, 
suppose that you are a manufacturer of 
computer software, and you want to 
determine the relationship between the 

number of inquiries that are received, 
and the number of orders that are 
placed by your customers. You could 
record those numbers monthly for a one 
year period, and then correlate the two 
variables. However, obviously inquiries 
will precede actual orders, and one can 
expect that the number of orders will 
follow the number of inquiries with 
some delay. Put another way, there will 
be a (time) lagged correlation between 
the number of inquiries and the number 
of orders that are received.  

Time-lagged correlations are 
particularly common in econometrics. 
For example, the benefits of investments 
in new machinery usually only become 
evident after some time. Higher income 
will change people's choice of rental 
apartments, however, this relationship 
will be lagged because it will take some 
time for people to terminate their 
current leases, find new apartments, 
and move. In general, the relationship 
between capital appropriations and 
capital expenditures will be lagged, 
because it will require some time before 
investment decisions are actually acted 
upon.  

In all of these cases, we have an 
independent or explanatory variable 
that affects the dependent variables 
with some lag. The distributed lags 
method allows you to investigate those 
lags.  

Detailed discussions of distributed lags 
correlation can be found in most 
econometrics textbooks, for example, in 
Judge, Griffith, Hill, Luetkepohl, and 
Lee (1985), Maddala (1977), and Fomby, 
Hill, and Johnson (1984). In the 
following paragraphs we will present a 
brief description of these methods. We 
will assume that you are familiar with 
the concept of correlation and the basic 
ideas of multiple regression.  

Suppose we have a dependent variable 
y and an independent or explanatory 
variable x which are both measured 
repeatedly over time. In some textbooks, 
the dependent variable is also referred 
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to as the endogenous variable, and the 
independent or explanatory variable the 
exogenous variable. The simplest way to 
describe the relationship between the 
two would be in a simple linear 
relationship:  

Yt = i*xt-i  

In this equation, the value of the 
dependent variable at time t is 
expressed as a linear function of x 
measured at times t, t-1, t-2, etc. Thus, 
the dependent variable is a linear 
function of x, and x is lagged by 1, 2, 
etc. time periods. The beta weights ( i) 
can be considered slope parameters in 
this equation. You may recognize this 
equation as a special case of the general 
linear regression equation. If the 
weights for the lagged time periods are 
statistically significant, we can conclude 
that the y variable is predicted (or 
explained) with the respective lag.  

We for historical purposes will review 
some early work by both Durbin (1950) 
and by Shirley Almon. 

Durbin and Watson   

A common problem that often arises 
with the following model 

y(t) = a + b*x(t) + e(t),  
 
is that you often find that e(t) has large, 
positive serial correlation. Ignoring this 
results in a badly mis-specified model. 
Durbin suggested that one study the 
auto-regressive structure of the errors 
and finding a significant correlation 
between e(t) and e(t-1) one should 
rather entertain the larger model 
 
y(t) = a + b*x(t) + e(t) 
 
e(t) =  rho*e(t-1) + a(t) an  
 
ARIMA model (1,0,0) 
 
culminating in an a(t) process that was 
normal, independent and identically 
generated , N.I.I.D. for short. 

 
Durbin and Watson developed a test 
statistic and paved the way for 
empirical model restructuring via 
diagnostic checking. 
 
The problem however was that they 
were observing a symptom, significant 
autocorrelation of the e(t)’s at lag 1 and 
inferring cause. 
 
Significant autocorrelation of lag 1 in an 
error process can arise in a number of 
ways. 
 
1.Another ARIMA model might be more 
appropriate  
 
2.Additional lags of X might be needed 
to fully capture the impact of X. When 
additional lags are needed one gets a 
“false signal” from the autocorrelation 
function. 
 
3.Outliers may exist at successive 
points in time causing a “false signal” 
from the autocorrelation function. 
 
4.The variance of the errors e(t) might 
be changing over time. 
 
5.The parameters of the model might be 
changing over time. 
 
Thus the naïve augmentation strategy of 
Durbin and Watson did not necessarily 
address itself to the cause. 
 
Other researchers, notably Hildreth and 
Liu made contributions in the 60’s but 
it was all like an appetizer to the 
rigorous approach incorporated into the 
Box-Jenkins approach.  
 
Namely 
 

1. the acf of the tentatively 
identified errors is examined to 
suggest the ARIMA form 

2. the cross-correlation of these e(t) 
with lags of X to detect needed 
lag structure in X 

 
and  
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3. the need for Pulses, Level Shifts , 
Seasonal Pulses and/or Local Time 
Trends to guarantee that the mean of 
the error is zero everywhere or 
equivalently that the mean of the errors 
doesn't differ significantly from zero for 
all subsets of time. 

Almon Distributed Lag  

A common problem that often arises 
when computing the weights for the 
multiple linear regression model where 
lags of X  are thrown in arbitrarily up to 
some assumed maximum is that the 
values of adjacent (in time) values in the 
x variable are potentially highly 
correlated. In extreme cases, their 
independent contributions to the 
prediction of y may become so 
redundant that the correlation matrix of 
measures can no longer be inverted, 
and thus, the beta weights cannot be 
computed. In less extreme cases, the 
computation of the beta weights and 
their standard errors can become very 
imprecise, due to round-off error. In the 
context of Multiple Regression this 
general computational problem is 
discussed as the multicollinearity or 
matrix ill-conditioning issue.  

Almon (1965) proposed a procedure that 
will reduce the multicollinearity in this 
case. Specifically, suppose we express 
each weight in the linear regression 
equation in the following manner:  

i = 0 + 1*i + ... + q*iq  

Almon could show that in many cases it 
is easier (i.e., it avoids the 
multicollinearity problem) to estimate 
the alpha values than the beta weights 
directly. Note that with this method, the 
precision of the beta weight estimates is 
dependent on the degree or order of the 
polynomial approximation.  

Misspecifications. A general problem 
with this technique is that, of course, 
the lag length and correct polynomial 
degree are not known a priori or that a 
polynomial is even a correct assumption. 
The effects of misspecifications of these 

parameters are potentially serious (in 
terms of biased estimation).   

Furthermore if there are any omitted 
Deterministic Variables there effect 
remains in the error term thus 
distorting estimates and the resulting 
tests of significance.  

Box and Jenkins solved the 
identification problem by pre-filtering to 
create stationary surrogate variables 
where the surrogate x was free of all 
autoregressive structure thus 
identification of the transfer between 
the original variables was less 
ambiguous. 
 
llustrative Examples.  

Consider the following simple example 
where we have 18 years of annual data 
for the country of Indonesia. We have 
the unemployment rate Yt and xt the 
minimum wage set by law. 

             xt           Yt      

1981 2.700 451.000                      
1982 3.000 462.000                       
1983 2.000 485.900                      
1984 2.000 516.000                      
1985 2.100 543.900                       
1986 2.600 550.100                      
1987 2.500 599.900                      
1988 2.800 645.100                      
1989 2.800 670.100                      
1990 2.500 739.300                       
1991 2.600 1280.800                    
1992 2.700 1403.100                     
1993 2.800 1675.100                     
1994 4.400 1899.800                     
1995 7.200 2201.500                     
1996 4.900 2345.200                     
1997 4.700 2745.000                    
1998 5.500 3218.800 
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A plot of Unemployment versus 
Minimum Wage, all series 
standardized
 

 

 

 

The ordinary and potentially incorrect 
simple regression between these two 
variables yields: 

Yt =-472.19+517.26*xt +zt                                            

The final model yields the lag effect of 
Minimum Wage on Unemployment and 
the Level Shift at time period 1991 
(period 11 of 18) which reflects on 
omitted variable that permanently 
changed the trend at 1991. In addition 
there were three other period of 
unusual one-time values 1982, 1995 
and 1996 which were treated on order 
to come up with Robust Estimates of 
the Regression parameters of 
Unemployment as it responded to 
contemporaneous and lagged Minimum 
Wage Rates.                                                                            

                                                               
While a more correct model, i.e. a Box-
Jenkins model is 

yt =  -951.73+341.55*xt +   291.521*xt-1                                            B. Regression versus Univariate Box-
Jenkins     

   
         +[ Lt=t1 ][(+  715.16 )] 
         +[ Pt=t2 ][(-  1303.8 )] 
         +[ Pt=t3 ][(-  1190.8 )] 
         +[ Pt=t4 ][(-  398.04 )] 
         +      [*zt  ] 
                                                                                 

ARIMA, also known as Rational 
Expectations Model is a pure "rear-
window driving" approach as it simply 
develops a weighted average of the past. 
Historical Interventions deterministic in 
nature such as Pulses, Level Shifts, 

                                Yt   = 
UNEMPLOYMENT                  
                                              x    = 
MWY                           
             :  NEWLY IDENTIFIED 
VARIABLE     Lt=t1 = I~L00011 11   
LEVEL    
             :  NEWLY IDENTIFIED 
VARIABLE     Pt=t2 = I~P00015 15   
PULSE    
             :  NEWLY IDENTIFIED 
VARIABLE     Pt=t3 = I~P00016 16   
PULSE    
             :  NEWLY IDENTIFIED 
VARIABLE     Pt=t4 = I~P00002  2   
PULSE    
  
 

 
 
 
Yielding more than a 90% reduction in 
variance and an increase in R-Square 
from 67.7% to 98.1%.  
 

 
Regression versus Univariate Box-
Jenkins (ARIMA) 
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Seasonal Pulses and/or Local Time 
Trends are incorrectly resolved with 
with by differencing or ARMA structure. 
These effects should be explicitly 
included in the model creating a 
ROBUST ARIMA MODEL which 
combines both memory and ARIMA 
structure. Unfortunately most 
practitioners being limited by their 
software were unable to expand the 
ARIMA model to capture and 
incorporate these effects. 
 
An ARIMA model is simply a weighted 
average of the past. 
 

Yt = i*yt-i 
 
 
 

 
 
 
 
 
In computing moving averages one needs 
to be concerned about two items:  
 
1. The number of periods to be used ( i.e. 
the length of the weights or the number 
of weights i.e. the number of I  
 
and  
 
2. The actual values of the weights. The 
answer to this double-edged question is 
called univariate Box-Jenkins which if 
correctly implemented returns both the 
number of weights to be used and the 
actual coefficients ( I ) to be applied to 
each lag. Modern approaches perform 
this task in a robust manner such that 
anomalies in the data be they  
 

a. pulses 
b. level shifts  
c. seasonal pulses or 
d. time trends  

 
are accounted for thus providing a "good 
model". 
 

For example an ARIMA model is 
essentially a “Memory Model” which can 
be viewed as the following. 
 

 
 
 
Univariate Box-Jenkins is also known as 
ARIMA and lots of material can be found 
at http://www.autobox.com and other 
places in cyberspace. There is no need to 
assume the number of weights and to 
assume that all of the weights are equal 
or fall on a simple curve.  
 
Identification of the form of the model 
involves measuring the degree of 
association between historical vales and 
the incremental importance of particular 
lags as it “explains” the behavior of 
current values. One is naturally drawn to 
use the ACF and the PACF to measure 
these associations. 
 
If you don't want to use ACF and PACF to 
identify the pdq structure then you could 
try using the unconditional and 
conditional regression coefficients.  
 
For example, just compute the regression 
between Y and Y lag and list these 
regression coefficients for lag 1 to k. 
These are unconditional regression 
coefficients or unconditional correlation 
coefficients. Now compute a multiple 
regression 
 
between Y and Y (LAG1) and Y(LAG2 ). 
The conditional regression coefficient for 
the second input, i.e. Y (LAG2) will tell 
you how important LAG2 is in predicting 
Y. Now you compute a multiple 
regression with three input series 
Y(LAG1), Y(LAG2) and Y(LAG3) and 
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evaluate the significance of the 
conditional correlation associated with 
Y(LAG3). This will tell you how important 
LAG3 is and so on.  
 
Eventually if there are more significant 
simple correlations than conditional 
correlations you declare the model to be 
an AR model. The number of coefficients 
(p) would be equal to the number of 
significant conditional correlations. In a 
similar manner, if there are more 
significant conditional correlations than 
simple correlations you would declare the 
model to be  
 
a MA model. The number of MA 
coefficients would be equal to the 
number of simple correlations that were 
deemed to be significant.  
 
The d in the model is just a particular 
case of AR terms and is normally 
evidenced by a strong set of simple 
regression coefficients that slowly decay 
in absolute value.  
 
Of course some readers will see that this 
approach of using simple regression 
coefficients and conditional regression 
coefficients is exactly what the ACF and 
the PACF are. To some extent it might 
have been preferable for Box and 
Jenkins, and others, to couch their 
model identification schemes in terms of 
regression coefficients and never to have 
mentioned ACF and PACF at all.  
 
Even if you correctly combine memory 
(ARIMA) and dummies (Pulses, Seasonal 
Pulses, Level Shifts and Local Time 
Trends you are still simply using only 
the past of the time series. 
 
The future is not caused by the past but 
the past can be said and proven to be a 
proxy for omitted variables ( the X's in 
the causative model ). 
 
Having said that some other reflections 
are in order. 

If the omitted variable is stochastic and 
has no internal time dependency (white 
noise) then its effect is simply to 
increase the background variance 

resulting in a downward bias of the 
tests of necessity and sufficiency. If 
however the omitted series is stochastic 
and has some internal autocorrelation 
then this structure evidences itself in 
the error process and can be identified 
as a regular phenomenon and appears 
as ARIMA structure. For example, if 
degree is needed but omitted a seasonal 
ARIMA structure will be identified and 
becomes a surrogate for the omitted 
variable. 

If the omitted variable is deterministic 
and without recurring pattern it may be 
identified via surrogate (intervention) 
series. 

If the model is under-specified the 
omitted structure will show up in error 
diagnostics leading to model 
augmentation. 

Diagnostic residual analysis should 
identify intervention variables that may 
be simply a one-time pulse or may be 
systematic (11th week of the year for 
example). Consider the case where an 
important variable like the occurrence 
of St. Patrick s day in predicting beer 
sales has been omitted from the model. 
The errors from that model would 
contain an unusual spike every March 
17th (11th week of the year) and would 
help identify the omitted variable. The 
series may have changed level and to 
some statistically deficient procedures 
this might appear like a trend change 
but not to a superior engine. In some 
cases there is a gradual or asymptotic 
change to a new level. This process is 
identifiable as dynamic change. 

The intervention series should be 
identified by a maximum likelihood 
procedure which augments the list of 
input series. This procedure is not 
simply taking the model residuals and 
standardizing them to determine the 
outliers. A number of software 
developers report this as outlier 
detection but this approach requires the 
errors to be independent of each other. 
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The concept of data mining should be 
incorporated where the engine detects 
deviation. Detecting deviation, which is 
the exact opposite of database 
segmentation, identifies outlying points 
in a data set (records that do not belong 
to any other cluster) and determines 
weather they can be represented by 
statistically significant indicator 
variables. Deviation detection is often 
the source of true discovery since 
outliers express deviation from some 
known expectation and norm. It is very 
important that intervention detection be 
done automatically in both a univariate 
(non-causal) model and a multivariate 
(causal) model. 

In many applications there exists local 
trends which sometimes change 
abruptly. ARIMA models are deficient in 
dealing with this phenomena as it uses 
level shifts or differencing factors to 
mimic the process. In some cases 
dummy variables using the counting 
numbers is a more appropriate and 
visually correct structure keeping in 
mind that the trend may not have 
started at the first data point. In general 
the trend may have a dead period in the 
beginning or at the end. A number of 
trends may be necessary in conjunction 
with pulses etc. and an error process 
involving some arbitrary ARIMA 
structure. 

Consider the Indonesia example and 
let’s use an ARIMA model for the 
Unemployment series. We will present 
both a simple ARIMA model without 
Intervention Detection and the one with 
InterventionDetection.

 

and with Intervention Detection 

 

A comparison … 

 

The two equations have different 
structures and forecasting implications, 
neither of them adequate as the true 
causal variable Minimum Wage Rate 
has been omitted for pedantic reasons. 

ARIMA by itself yields 

yt =  153+yt-1   

which is a random walk model with a 
trend constant 

ARIMA with Intervention Detection 
yields 

yt =  418+25*t1 + 231*t2 +273*p3  

  
         +[ Tt=t1 ][(+  25 )] 
         +[ Tt=t2 ][(+  231)] 
         +[ Pt=t3 ][(+  273)] 
              
          
             :  NEWLY IDENTIFIED 
VARIABLE     Tt=t1 = I~T00001  1    
TREND  
             1,2,3,4,5,6,7,8,9 
               10,11,12,13,14,15,16,17,18 
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             :  NEWLY IDENTIFIED 
VARIABLE     Tt=t2 = I~T00010 11 
TREND    
             0,0,0,0,0,0,0,0,0, 
             1,2,3,4,5,6,7,8,9   
 
             :  NEWLY IDENTIFIED 
VARIABLE     Pt=t3 = I~P00018 18   
PULSE  
             0,0,0,0,0,0,0,0,0, 
             0,0,0,0,0,0,0,0,1 

which is a trend model tin time with a 
change in slope or trend at time period 
10 and an unusual value at time period 
18. Thus the second trend variable sets 
up to test the hypothesis that the trend 
increased at time period 10 by 231 from 
the prior trend of 25. The pulse variable 
reflects an assertion that the 18th value 
was significantly higher than what was 
expected by 273. 

Summary 

Multivariate Box-Jenkins is 
essentially a healthy marriage 
between Regression(X) and ARIMA. 
That is why it is sometimes referred 
to as XARMAX. When you add 
Intervention Detection into the mix 
you get a robust XARMAX model, the 
design goal of AUTOBOX. 

In conclusion 

Appendix :  

In conclusion we discuss some of the 
subtleties of ARIMA models. 

Some researchers suggest doing ARIMA 
first before attempting to test the 
hypothesis that a causal variable is 
important. However the incorrect 
suggestion of doing an ARIMA first 
occludes the extraction of the causal 
variables and is thus then seriously 
flawed. 

 

 

For example 

if  y(t) f x(t) and x(t) is g x(t-1) 
then 

y(t) h x(t-1) and thus since 

y(t-1) f x(t-1) we have 

y(t) i y(t-1) 

Which illustrates that an ARIMA model 
is a poor man's regression model. 

By extracting the ARIMA portion first 
from Y we can be really extracting the 
effect of X.. Thus it will not be there 
when we do subsequent analysis 
culminating in a false rejection of the 
causal variable. 

Another way of viewing this is to 
consider 

x(t)=[Theta1(b)/Phi1(b)]*a1(t) thus x(t) is 
an auto projective process  

and 

y(t) = W(B)*x(t) + n(t) where 
n(t)=[Theta2(b)/ Phi2(b)]* a2(t) 

thus substituting for x(t) we get a 
combination of the two n.i.i.d. variables 
(a1 and a2) yielding  

y(t)=[Theta3(b)/Phi3(b)]*a3(t)  

Where the theta and phi polynomials 
have the familiar MA and AR structure, 
illustrating that an ARIMA model is a 
poor man's regression model where the 
x variable is implicit rather than the 
normally preferred explicit form. 
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