
Climate change and salmon production in the Northeast  
                                     Pacific Ocean  
                                 by S. R. Hare and R. C. Francis  
                                     ABSTRACT  
                                          Published as:  
  Hare, S. R. and R. C. Francis. 1995. Climate change and salmon production in 
the northeast Pacific Ocean. In R. J.  
       Beamish [ed.] Climate Change and Northern Fish Populations. Can. Spec. 
Publ. Fish. Aquat. Sci. 121.  

Introduction  

In the mid-1970s, ocean conditions in the North Pacific Ocean underwent a dramatic and 
abrupt change (Graham 1994).  
Coincident with the physical regime shift, Alaskan salmonids entered an era of greatly 
increased production that has persisted  
into the 1990s (Fig. 1). Throughout their long (over 100 yr) commercial exploitation 
history, several of the Alaskan salmon  
species have demonstrated "red noise" variability, wherein periods of high (low) 
production tend to persist for a lengthy period  
before abruptly reversing to the opposite state. For example, in the 1930s and early 
1940s, salmon landings were high,  
followed by an era of low catches from the late 1940s to late 1970s. As Alaskan landings 
increased in the late 1970s, several  
North American west coast stocks, notably Oregon coho salmon (Oncorhynchus kisutch; 
Pearcy 1992), went into a  
prolonged period of decline.  

Much early research on variability in salmon survival (and therefore production and 
catch) focused on the freshwater stage of  
their life cycle, attempting to link survival to conditions in their spawning and rearing 
habitat. The period spent at sea was  
regarded as relatively unimportant. There is now a growing awareness of the importance 
of the marine environment in  
determining salmon production (e.g. Pearcy 1984; Beamish and McFarlane 1989).  

Variability in marine survival of salmon is poorly understood (Mathews 1984). 
Numerous studies have attempted to correlate  
survival with environmental factors, though few have proven useful in predicting salmon 
abundance or assisting in management  
decision making (Pearcy 1992). Part of the difficulty in elucidating the driving factors of 
survival is that the relationship between  
the environment and survival is clouded by many factors. Biotic (e.g. intra- and inter-
specific competition, prey availability,  
predation) and abiotic (environmental variables, habitat) factors not only exhibit complex 



relationships with survival (non-linear,  
threshold) but are themselves often highly correlated.  

Despite these drawbacks, the importance of attempting to understand the causes of 
variable survival should not be  
underestimated (Francis and Sibley 1991). In particular, understanding large-scale and 
long-term variability would benefit both  
fishery managers and fishermen (Shepherd et al. 1984).  

Large marine ecosystems fluctuate in response to physical forcings that occur over a 
number of time intervals. There appears to  
be a nested hierarchy of interacting processes occurring on different time scales that are 
relevant to their dynamics, ranging from  
relatively discrete processes that occur over times on the order of 1 yr or less (e.g., the 
1970 North Pacific winter atmospheric  
circulation pattern (Hollowed and Wooster 1992)), to processes that persist over long 
time periods and fluctuate at the  
inter-century level (Baumgartner et al. 1992). What we are most interested in identifying 
in this analysis are regimes that define  
points in time, separated by intervals on the order of decades, where major jumps or 
shifts in the level of abundance occur in  
large marine ecosystems. Therefore, in examining the interannual dynamics of various 
biological components of large marine  
ecosystems, what we see are responses to these nested hierarchies of interacting 
processes occurring at different time scales  
and working synergistically to create pattern. In this analysis, it is pattern at the regime 
level that we are trying to interpret.  

We hypothesize that regional variability in salmon production is driven by large-scale 
climate change, reflected in North Pacific  
atmospheric-oceanic regime shifts. Under this hypothesis, salmon populations exhibit 
two characteristics: relatively stable  
production while a particular regime persists, followed by a rapid transition to a new 
production level in response to the  
physical regime shift. If large-scale salmon production is closely related to North Pacific 
climate processes, we should find  
coherent shifts in mean production levels across both species and area.  

In addition to the late 1970s regime shift, we surmise that an earlier shift, opposite in 
character, occurred in the late 1940s.  
Based on evidence summarized in the Discussion, we tentatively identify the regime 
shifts as taking place in the winters of  
1946-47 and 1976-77. Our hypothesis suggests that two shifts in Alaskan salmon 
production should be detectable: a decrease  
in the late 1940s and an increase in the late 1970s.  



To test this hypothesis, we proceed by statistically analyzing the historical production 
dynamics of four major Alaskan salmon  
stocks: western and central sockeye salmon (Oncorhynchus nerka), southeast and central 
pink salmon (Oncorhynchus  
gorbuscha). While many researchers have noted the aforementioned swings in production 
(e.g., Beamish and Bouillon 1994),  
there remained the possibility that the changes might be either random processes or 
nonsignificant, in a statistical sense. Owing  
to the high serial correlation (lack of independence between successive observations), the 
t-test for equality of means cannot be  
used to test for production shifts. We utilize a time-series technique known as 
intervention analysis to identify the significance,  
magnitude, and form of structural shifts (interventions) in the four time series. We 
identify and test the timing of the interventions  
by matching the onset of the physical regimes with the life history of the different species 
of salmon. Intervention analysis is a  
relatively recent statistical technique recommended as a method for detecting and 
quantifying non-random change in an  
unreplicated experiment (Carpenter 1990).  

To test for interventions, we fitted univariate time-series models of the Box-Jenkins 
(1976) autoregressive integrated moving  
average (ARIMA) class. These ARIMA models provide a baseline fit to the correlation 
structure exhibited by the time series.  
Interventions are subsequently identified by analyzing model residuals. Model parameters 
are re-estimated incorporating the  
intervention(s), and the models compared on the basis of several criteria. After 
identifying the timing and nature of the  
interventions, we then review the evidence for synchronous large-scale physical regime 
shifts in the North Pacific.  

Time-Series Modeling and Intervention Analysis  

The use of time-series analysis to model fish population dynamics has increased in recent 
years. Most of the theoretical  
development and initial application has taken place in the econometric and business 
forecasting literature. Recognition of the  
potential applicability to ecological problems appears to have begun with Moran (1949).  

There are five classes of commonly applied time-series models (Jenkins 1979). The 
simplest, and most widely known,  
comprise the so-called Box-Jenkins ARIMA univariate models. Simple ARIMA models 
utilize only the history of the time  
series to "explain" its observed variability. The second class comprises the transfer-
function noise (TFN) models, which relate  
an output-series variability to both its own history and that of one or more explanatory 



variables. A third class, related to TFN  
models, comprises intervention models which incorporate the effects of unusual events, 
natural or human-made, to modify  
ARIMA models. The other two classes comprise multivariate models. Multivariate 
stochastic models permit feedback among  
several time series and are often referred to as vector ARIMA models. The final class 
includes explanatory variables giving a  
multiple input-multiple output mode and are sometimes referred to as multivariate 
transfer-function models.  

In addition to these time-series models, there has been a parallel development of 
frequency-domain models, principally in the  
engineering literature. In the frequency-domain models, processes are modeled as 
combinations of cosine waves. While  
theoretically translatable to time-domain models, there have been few applications in 
ecology. More recently, state-space  
models have generated a great deal of attention. In state-space, or more generally, 
structural modeling, a time series is  
decomposed into linear, seasonal, and irregular components (Harvey 1989). The central 
feature of structural models is the use  
of the Kalman filter (Kalman 1960; Kalman and Bucy 1961) for parameter estimation 
and forecasting. The principal difference  
between traditional time-series and structural models is the manner in which the error 
component is modeled. Though neither  
method has emerged as clearly superior, structural models are likely to receive increased 
attention.  

The first published use of time-series modeling in the fisheries literature was Dunn and 
Murphy (1976) and Murphy and Dunn  
(1977), who used univariate and transfer-function models to forecast fish catch in an 
Arkansas reservoir. Univariate and/or  
transfer-function models have been used to model the population dynamics of American 
lobster (Homarus americanus;  
Boudreault et al. 1977, Fogarty 1988a, Campbell et al. 1991), rock lobster (Jasus 
edwardsii; Saila et al. 1980), skipjack tuna  
(Katsuwonus pelamis; Mendelssohn 1981), yellowtail flounder (Limanda ferruginea: 
Kirkley et al. 1982), menhaden  
(Brevoortia patronus; Jensen 1985), haddock (Melanogrammus aeglefinus; Pennington 
1985), Alaskan salmon (Quinn and  
Marshall 1989; Noakes et al. 1987), winter flounder (Pseudopleuronectes americanus; 
Jeffries et al. 1989), blue whiting  
(Micromesistius poutassou; Calderon-Aguilera 1991), pilchard (Sardina pilchardus; 
Stergiou 1989), and striped bass  
(Morone saxatilis; Tsai and Chai 1992). Intervention analysis has been applied to 
Dungeness crab (Cancer magister; Noakes  
1986), geoduck clams (Panope abrupta; Noakes and Campbell 1992), power plant impact 



on yellow perch (Perca  
flavescens) and alewife (Alosa pseudoharengus; Madenjian et al. 1986), and to forecast 
invertebrate yield (Fogarty 1988b).  
Vector ARIMA models have been applied to Great Lakes pelagic species (Cohen and 
Stone 1987; Stone and Cohen 1990)  
and multivariate transfer-function models were used by Mendelssohn and Cury (1987, 
1989) to explore catch per unit of effort  
in Ivory Coast pelagic fisheries.  

In this paper, we use intervention models to determine if North Pacific regime shifts are 
reflected in Alaska salmonid time series.  
We provide a brief outline of the technique and explanation of time-series terminology 
and notation. Those seeking a more  
theoretical description should consult one of the numerous texts available including the 
seminal works on ARIMA model  
formulation (Box and Jenkins 1976) and intervention analysis (Box and Tiao 1975).  

Notation  

ARIMA and intervention models have several different representations. We employ the 
following notation:  

1)  

     is the discrete time series, which may be transformed to stabilize the variance using 
the Box-Cox (1964) power  
transformation. The most common transformations are square root (l=0.5), natural 
logarithm (l=0.0), and inverse (l=-1.0).  
No transformation is equivalent to a lambda value of 1.0. If required, a power 
transformation must be done as the first step in  
time-series modeling.  

    is an "integrating factor" (the "I" in ARIMA), better defined as a differencing operation 
to induce stationarity in the mean of  
a series. The number of differences taken (which can be at various lags) is indicated by d. 
If required, differencing is the second  
step in ARIMA modeling.  

     is a seasonal integrating factor(s) where s is the lag at which the Dth seasonal 
difference is taken. While seasonal models  
are generally applied to weekly, monthly, quarterly, etc. data, they may also be applied to 
non-seasonal data that exhibit  
seasonal (i.e., periodic) behavior.  

    plays different roles depending on the value of d (order of differencing). For d = 0, q0 
is equal to the estimated mean of the  



transformed input series multiplied by the sum of the autoregressive components and 
moved to the right-hand side of the  
equality. For d ³ 1, q0 is called the deterministic trend and is often omitted unless clearly 
called for (Wei 1990, p. 72).  

at is a random error component assumed to be normally independently distributed with 
mean 0 and constant variance s2a.  

B is the backshift operator. By convention it is a special notation used to simplify the 
representation of lagged values: Byt = yt-1,  
Bsyt = yt-s. Note also the following definition: Ñ = 1 - B, thus differencing is often 
represented by: Ñyt = (1 - B)yt.  

       is the autoregressive polynomial of the form (1 - f1B - f2B2 - ... - fpBp). The term 
"autoregressive" is in reference to  
how the value of y is being regressed on its own past values plus a random shock, thus 
relating the present value of a process to  
a linear combination of its past values. An autoregressive process can be written as yt = 
f1yt-1 + f2yt-2 + ... + fPyt-P + at..  
An autoregressive process of order p is abbreviated AR(p), and lower orders than p need 
not be non-zero.  

        is the multiplicative seasonal autoregressive polynomial of the same form as the 
non-seasonal polynomial. Multiple  
seasonal autoregressive components may be included in the model, each of seasonality S. 
The subscript P identifies the  
presence of a seasonal component, and all coefficients other than that of the seasonal lag 
are set equal to 0.  

       is the moving average polynomial of the form (1 - q1B - q2B2 - ... - qqBq). The 
moving average term models the  
persistence of random effects over time and can be written as yt = at + q1at-1 + q2at-2 + 
... + qpat-p. A moving average  
process of order q is abbreviated MA(q), and lower orders than q need not be non-zero.  

        is the multiplicative seasonal moving average polynomial of the same form as the 
non-seasonal polynomial. Multiple  
seasonal moving average components may be included in the model, each of seasonality 
S. The subscript Q identifies the  
presence of a seasonal component, and all coefficients other than that of the seasonal lag 
are set equal to 0.  

    represents the jth intervention and is analogous to a dummy variable in regression. 
Interventions can be either step (I = 1 for  
t ³ T, I = 0 otherwise) or pulse (I = 1 for t = T, I = 0 otherwise) functions. A step 
intervention indicates a permanent shift in the  



mean of a series, while a pulse indicates a one-time shock. There are several different 
system responses to step and impulse  
interventions, such as an abrupt permanent step, a step decay, and impulse decay.  

       is a polynomial of the form (w0 - w1B - w2B2 - ... - wsBs) representing the initial 
impact of the intervention.  

       is a polynomial of the form (1 - d1B - d2B2 - ... - drBr) representing the long-term 
impact of the intervention.  

    models the delay in response associated with a particular intervention.  

Nonseasonal ARIMA models use the notation (p, d, q) to compactly represent 
autoregressive, difference, and moving average  
orders. Seasonal models are expressed as (p, d, q) x (P, D, Q)S, with each seasonal 
component separately represented. Thus,  
a (1, 0, 5) model indicates the presence of additive lag 1 AR and lag 5 MA terms with 
smaller lag MA terms possibly present.  
A (1, 0, 0) x (0, 0, 1)5 model also has lag 1 AR and lag 5 MA terms, but the parameters 
are multiplicative rather than additive.  

Model development  

Univariate time-series model building, in the methodology of Box and Jenkins (1976), 
proceeds in the following fashion:  

1) Model Identification. In this step, tentative models are identified. Determination of the 
need for power transformation (for  
variance stabilization) and differencing (to render the series stationary in the mean) are 
first evaluated. Plots of the  
autocorrelation and partial autocorrelation functions (ACF and PACF respectively) of the 
possibly transformed series are  
examined to assist in determining the order of the AR and MA components (Box and 
Jenkins 1976). Several other  
identification tools are also available, such as the extended sample autocorrelation 
function (ESACF; Tsay and Tiao 1984),  
generalized partial autocorrelation coefficient (GPAC; Woodward and Gray 1981) and 
the prediction variance horizon (PVH;  
Parzen 1981).  

2) Parameter estimation. Following selection of a potential model(s), estimates of the 
parameters are calculated. Access to  
time-series software is almost essential as ARIMA model parameters must be fitted using 
a nonlinear estimation routine (though  
the models themselves are usually linear). Maximum likelihood procedures, usually 
based on the Cholesky decomposition or  



the Kalman filter, have been developed as an alternative to the early methods of least 
squares and approximate likelihood  
utilized by Box and Jenkins (1976). Standard errors are also computed, and parameters 
judged to not be significantly different  
from zero can be dropped. The remaining parameters are then re-estimated.  

3) Model diagnostic checking. With a tentative model selected and parameters estimated, 
the adequacy of the model must be  
assessed to determine if model assumptions are met. One basic assumption is that the 
residuals at form a white-noise series. A  
common test is the portmanteau test of Box and Pierce (1970), which uses the residual 
ACF to test the joint null hypothesis  
that all serial correlations are equal to zero. It is also common in time-series analysis that 
several models may be adequate in the  
sense that the model residuals are reduced to white noise. Several model selection criteria 
have been developed to assist in  
model selection. In this analysis, we compared competing models using five criteria: 
mean absolute error (MAE), which  
measures the average one-step-ahead prediction error; the unbiased residual variance s2a, 
equal to the residual sum of squares  
divided by degrees of freedom; the coefficient of determination r², which is the amount of 
variance "explained" by the model;  
Akaike's Information Criterion (AIC; Akaike 1974); and Schwarz's Bayesian Criterion 
(SBC; Schwarz 1978). The AIC and  
SBC are performance statistics that balance statistical fit with model parsimony. The 
SBC utilizes a larger penalty function than  
the AIC, thus often suggesting a model with fewer parameters. Formulas for the model 
diagnostic and selection criteria are  
contained in the appendix.  

Intervention detection and estimation  

In intervention analysis, the correlation structure is initially assumed to be unaffected by 
the interventions that are modeled as  
deterministic functions of time. Once the best ARIMA model has been selected, the 
three-step modeling sequence is repeated  
to identify and test the significance of interventions.  

The original intervention methodology developed by Box and Tiao (1975) permitted 
estimation of intervention effects when the  
timing of the interventions was known a priori. To handle the situation where the number 
and timing of potential interventions  
are unknown, Chang and Tiao (1983) proposed an iterative detection technique using a 
likelihood ratio test. Interventions are  
identified in a stepwise fashion beginning with the residuals from the univariate model. 
Following detection and estimation of an  



intervention, model parameters are estimated and the resultant intervention model 
compared with the univariate model using the  
criteria cited above. The new model residuals can then be re-analyzed for evidence of 
other interventions.  

A good general review of intervention models is contained in Wei (1990), while Noakes 
(1986) discusses the applicability of  
intervention analysis to fisheries problems.  

There are two types of interventions, pulse and step. The first represents a discrete system 
shock; the second a permanent  
change in the mean level of a process. In this analysis, we model step interventions that 
result in permanent shifts in the mean  
level of salmon production. Step interventions can be modeled as abrupt (i.e., a one time-
step jump) or delayed (e.g., ramp,  
impulse decay) processes. It should be noted that testing for different types of 
interventions increases the probability of  
identifying a spurious intervention. However, our use of the AIC and SBC performance 
statistics should minimize this risk. Two  
software packages, AUTOBOX (Automatic Forecasting Systems, Inc. 1992), and SPSS 
Trends (SPSS, Inc. 1993), were  
used for all analyses.  

Data  

The salmon landings data used in this study were principally taken from an Alaska 
Department of Fish and Game (ADFG  
1991) annual report. Data for 1992 were taken from Pacific Fishing (1994). We selected 
the four major regional groups of  
stocks: western Alaska sockeye salmon, central Alaska sockeye and pink salmon, and 
southeast Alaska pink salmon. Landings  
data for these regional stocks are more likely to reflect actual production than other 
Alaskan salmon stocks, as they have been  
the most intensively exploited stocks because of their high abundances and value. These 
four regional stocks accounted for  
over 80% of total Alaskan salmon catches (by number) for the period 1925-1992. To 
more accurately reflect salmon  
production by area (Fig. 2), we corrected the Alaskan landings for interceptions using 
data provided in Shepard et al. (1985),  
Harris (1989) and the Pacific Salmon Commission (1991). Details of the adjustments are 
provided in Francis and Hare (1994).  

Catch data for these regional stocks are available from as early as the 1870s. We have 
restricted our analysis to 1925-1992  
which we consider to be the period of full exploitation. If there is a "fishing up" effect in 
the early part of the record, the  



time-series analysis would be affected by this form of nonstationarity. Our time series 
span 68 years which is fully adequate for  
a proper time-series analysis (Newton 1988).  

Results  

Western Alaska Sockeye  

The western Alaska sockeye data required a square-root transformation to stabilize the 
variance. Differencing was not  
required. Examination of the ACF and PACF indicates rather complex dynamics in this 
time series, substantially different from  
the three other salmon time series (Fig. 3) Lags 1, 4, and 5 in the ACF and lags 1, 4, and 
6 in the PACF were significant. A  
variety of models were fitted and compared. Initial identification indicated three 
candidate univariate models: (6, 0, 0), (1, 0, 5),  
and the seasonal model (1, 0, 0) x (1, 0, 0)5. Diagnostics indicated residual serial 
correlation at lag 3 for the seasonal model,  
thus a moving average term was added and the resultant (1, 0, 0) x (1, 0, 0)5 x (0, 0, 1)3 
model compared with the  
nonseasonal models. On the basis of the diagnostic statistics, the (6, 0, 0) model was 
judged to be the most parsimonious at  
representing the catch dynamics. Within this model, the lag 2, 3, and 4 autoregressive 
terms were statistically insignificant and,  
therefore, dropped from the final model. Residual analysis indicated that all serial 
correlation had been accounted for by the  
model. The final fitted model parameter estimates and standard errors for the univariate 
and subsequent intervention models are  
given in Table 1. Model diagnostics for the univariate and intervention models are given 
in Table 2.  

Based on the physical regime shifts that we tentatively identify occurring in the winters 
of 1946-47 and 1976-77 (Francis and  
Hare 1994), we hypothesize that interventions in the western Alaska sockeye salmon time 
series should be detected around  
1949-50 and 1979-80. Sockeye salmon from this region spend 1 or 2 years rearing in 
freshwater before migrating to sea  
where they are first exposed (and, probably, most vulnerable) to oceanic conditions. 
Bristol Bay sockeye salmon, which  
comprise most of the western Alaska sockeye salmon, generally spend two years at sea, 
thus the year classes that entered the  
ocean in 1977 would be caught in 1979.  

We fitted two intervention models, the first incorporating a 1979 step, the second also 
incorporating a 1949 step. For the  
one-intervention model, the 1979 step was highly significant (p < 0.01), and in the two-



intervention model, both interventions  
were highly significant (p < 0.01). In both cases, the best statistical fit was provided by 
simple step (i.e. no delay) interventions.  
Both models substantially outperformed the nonintervention model. The coefficient of 
determination, r², improved from 0.459 to  
0.575 with the 1979 intervention and further increased to 0.623 with inclusion of the 
1949 intervention (all model diagnostics  
reflect model fit in the transformed metric; thus for western Alaska sockeye salmon, the 
statistics result from model fitting in  
square root space). Both the AIC and SBC decreased substantially with the addition of 
each intervention.  

The 2 intervention model differed slightly from the two other models in its ARIMA 
components. The lag 1 AR term, which had  
decreased in significance from the no intervention to the one-intervention model, dropped 
out of the model and a lag 3 AR term  
was added. The AR(5) coefficient was positive and highly significant in all three models, 
likely reflecting the pseudo-regular 5  
year cycle (Eggers and Rogers 1987). The decrease in significance of the AR(1) term 
with incorporation of interventions was a  
feature of the model building sequence for each of the salmon time series. One 
explanation for this result is that a time series that  
alternates between different levels (or regimes) will have the statistical appearance of a 
low frequency series with high apparent  
autocorrelation. Removing the "regime effect" from the time series often accounts for 
most of the low frequency (i.e., lag 1)  
autocorrelation.  

Resultant model fits and pre- and post-intervention means for the three models are 
illustrated in Fig. 4. For the one intervention  
(1979) model, estimates of the pre- and post-intervention means were 10.443 and 27.748 
million respectively, resulting in an  
estimated step intervention of 17.305 million. In the two-intervention model, the 1949 
step was estimated at -4.928 million and  
the 1979 step at 17.484 million. The three means were estimated at: 13.287 (1925-1948), 
8.359 (1949-1978), and 25.843  
million (1979-1992).  

Central Alaska Sockeye  

The central Alaska sockeye salmon time series dynamics were much less complex than 
those of the western Alaska sockeye  
salmon. The ACF and PACF for the natural logarithm transformed series (Fig. 3) 
indicated either a (2, 0, 0) or a (1, 0, 1)  
model. Model diagnostics indicated a better fit for a (2, 0, 0) model. The univariate model 
fit was the best among the four  



salmon time series (r2=0.644). Model residuals showed no residual autocorrelation. 
Parameter estimates for the univariate and  
intervention models are given in Table 3, and model statistics in Table 4.  

A large fraction of the central Alaska sockeye salmon (e.g., Kenai River, Chignik Lake 
runs) spend three years in the ocean  
before returning to spawn (Cross et al. 1983). In keeping with our hypothesis that the 
climate effect occurs during the first year  
of marine life, we tested for interventions in 1950 and 1980 for the central Alaska 
sockeye salmon time series. In the  
one-intervention (1980) model, the step intervention was highly significant (p < 0.01) and 
led to an improvement in all  
diagnostic statistics. The two-intervention model provided an equally large improvement 
as both interventions (1950, 1980)  
were highly significant. The lag 2 AR term, present in the no-intervention model, 
dropped out in each of the subsequent models.  
In addition, for reasons noted earlier, the magnitude of the AR 1 term also decreased with 
the incorporation of interventions.  

The effective change in mean catch for the one intervention model (1980) was 6.937 
million (Fig. 5). The estimated mean for  
the 1980-1992 period was 11.555 million, compared to an estimated mean of 4.618 
million prior to the intervention effect. For  
the two-intervention model, the interventions were estimated to have decreased mean 
catch by 1.919 million (from 5.665 to  
3.746million) between the 1925-1949 and 1950-1979 periods, and then increased mean 
catch by 8.086 million (to 11.832  
million) for the 1980-1992 period.  

Southeast Alaska Pink  

The southeast Alaska pink data required a natural logarithm transformation to stabilize 
the variance. The resultant ACF and  
PACF resembled central Alaska sockeye, indicating similar dynamics. The same two 
initial models, (2, 0, 0) and (1, 0, 1),  
were tested. The (2 ,0, 0) was eventually selected, the same model as for the central 
Alaska sockeye series. Model fit,  
however, was the poorest among the time series, as indicated by the r2 value (0.348). 
Univariate and intervention model  
parameter estimates are listed in Table 5, and model statistics in Table 6.  

Pink salmon migrate to the ocean in the spring following the year they were spawned and 
return the following year. Therefore,  
we tested for interventions in 1948 and 1978. In the one-intervention model, the 1978 
intervention was highly significant, but  
the AR 1 term dropped out as its p-value increased above 0.05 (to 0.09). The one-



intervention model actually had a slightly  
worse fit than the no intervention model. Had the AR 1 term been retained, however, 
most diagnostics would have favored the  
one-intervention model. In the two-intervention model, both interventions (negative in 
1948, positive in 1978) were also highly  
significant (p < 0.01). Interestingly, though, no ARIMA terms were significant after 
inclusion of the two interventions. The  
interpretation of this result is that Southeast Alaska pink salmon production (as indicated 
by catch) varies randomly about the  
various regime levels of production. Nearly half (r2=0.446) of the total variation in 
Southeast Alaska pink salmon catch was  
accounted for by the two interventions.  

The mean change in catch under the one-intervention model was 12.378 million, from a 
level of 15.280 million for the  
1925-1977 period to a level of 27.658 million for the 1978-1992 period (Fig. 6). 
Estimated average catch under the  
two-intervention model decreased by 17.169 million (from 26.678 to 9.509) from the 
1925-1947 period to the 1948-1977  
period and then increased by 16.480(to 25.989) million during the 1978-1992 period.  

Central Alaska pink  

The central Alaska pink time series required a square-root transformation to stabilize the 
variance. Both the ACF and PACF of  
the transformed series show significant correlation at lags 1 and 2, indicating a mixed 
ARMA process. The best model we  
found was a (1,0,2) model with no MA(1) term. Parameter estimates and model statistics 
for the univariate and intervention  
models are listed in Tables 7 and 8, respectively.  

In the one-intervention model, the highly significant step intervention identified in 1978 
resulted in a mean level increase of  
21.216 million, from 14.829 to 36.045 million (Fig. 7). The two-intervention model 
resulted in a further improvement of the  
model fit. Under this model, the mean level of production was 19.156 million during 
1925-1947, then dropped by 7.383 million  
to a level of 11.773 million for the 1948-1977 period, then increased by 25.509 million to 
reach the modern catch level of  
37.282 million.  

Incorporation of the interventions reduced both the AR(1) and MA(2) parameters 
substantially as the "regime effect" accounted  
for an increasingly large part of the serial correlation. The AR(1) term was highly 
significant (p < 0.01) in the no-intervention  
model, remained barely significant (p ~ 0.05)in the one-intervention model, and was not 



retained in the two-intervention model,  
resulting in a (0, 0, 2) model. The MA(2) term reduced in magnitude from -0.566 (no-
intervention model) to -0.241  
(two-intervention model).  

Discussion  

Over the past seven decades, Alaskan salmon populations appear to have alternated 
between high and low production  
regimes. We propose that Alaskan salmon are responding to changes in North Pacific 
climate regimes. Under this hypothesis,  
each salmon population exhibits a unique smaller-scale variability about some mean level 
of production during a climatic regime.  
The transition from one regime to another occurs relatively rapidly, resulting in a shift in 
the mean production level of Alaskan  
salmon populations.  

In support of this hypothesis, we have demonstrated nearly synchronous production shifts 
in four regional Alaskan salmon  
stocks. These stocks include two different species from three widely separated 
geographic regions. Using the technique of  
intervention analysis, we identified three production regimes defined by two major 
production shifts, one in the late 1940s, the  
other in the late 1970s.  

Alaskan pink and sockeye salmon spend the majority of their marine life cycle in the 
Central Subarctic Domain (CSD; Ware  
and McFarlane 1989) which encompasses the Gulf of Alaska (Fig. 8). The principal 
feature within the CSD is the Alaska Gyre,  
with an area of active upwelling at its core. The southern boundary of the CSD is defined 
by the Subarctic Current, whose  
latitudinal location varies yearly (Roden 1991, Ward 1993). During the seaward and 
return migrations, pink and sockeye  
salmon pass through the Coastal Downwelling Domain, a region extending from Queen 
Charlotte Sound to Prince William  
Sound dominated by the Alaska Current.  

Any attempt to link physical processes in the marine environment to Alaskan salmon 
production must involve oceanographic  
conditions within these two regions. We now examine the two production-regime shifts 
in greater detail, summarize the change  
in production, and consider the evidence for concurrent climate-regime shifts. We then 
discuss potential mechanisms linking the  
physics and biology.  

Late 1970s Shift  



The increase in salmon production was highly significant in all four time series. In the 
two-intervention models, the smallest  
t-value (based on roughly 63 degrees of freedom) of the four late 1970s step intervention 
variables was 5.492 (p < 0.0001,  
southeast pink salmon). Both pink salmon time series showed a significant jump in 1978 
to a higher production level. Because  
of the strength of the change in production, the timing of the intervention could also have 
been placed in 1977 or 1979, but  
model diagnostics indicated the best fit occurred in 1978. Additionally, we chose to test 
for a 1978 effect because, according  
to our hypothesis, the returning 1976 brood year class, first to be exposed to the new 
oceanic regime, should be the first to  
show a regime effect. A similar argument, based on the sockeye salmon life history, 
should lead to a 1979 or 1980 intervention  
for the two sockeye salmon time series, depending on whether the returning fish spent 
two or three years in the ocean. For the  
western Alaska sockeye, a 1979 intervention was statistically more significant than a 
1980 intervention. The reverse was true  
for central Alaska sockeye.  

Each of the four production groups is faced with a unique set of environmental conditions 
between their freshwater rearing  
habitat and entry into the marine feeding and migration grounds. The three geographic 
regions each contain numerous  
salmon-bearing rivers. Localized factors will, therefore, lead to some amount of unique 
variability added to the effect of the  
climatic regime on the population as a whole. This is reflected in the differing ARIMA 
structures among the four time series as  
well as the remaining unexplained variance. It is clear, however, that the four stocks 
entered an era of increased production in  
the late 1970s and have remained at that level in the 1990s. Combining the four series, we 
estimate that the increased  
production resulted in an annual mean catch increase of greater than 69 million salmon. 
This translates to a threefold difference  
in production between the previous regime of the late 40s-late 70s and the present regime 
beginning in the late 70s.  

Evidence for the timing and strength of the late 1970s regime shift has been documented 
in numerous environmental and  
biological variables (Ebbesmeyer et al. 1991). The most obvious physical manifestations 
of the late 1970s shift include a  
strengthening and eastward shift of the Aleutian Low (Trenberth 1990) and warming of 
the surface waters in the Gulf of Alaska  
(Royer 1989). Defining the event as the onset of a new regime rather than a temporary 
system shock reflects the persistence of  
the new state variables. Most evidence pinpoints the winter of 1976-77 as the critical 



transition period. The shift appears to  
have been forced by an increasingly vigorous winter circulation over the North Pacific 
(Graham 1994), leading to more severe  
and frequent winter storms (Seymour et al. 1984), decreases in mid-Pacific sea-surface 
temperatures (SSTs), and basin-wide  
decreases in sea-level pressure (Trenberth 1990). The large-scale increase in central 
Pacific chlorophyll (and thus  
phytoplankton) during the 1970s has been attributed to persistence of warm SSTs in the 
summer months (Venrick et al. 1987).  
The increase in Alaskan air and sea-surface temperatures probably derived from warm air 
advected from the south by a  
strengthened Aleutian Low.  

Hollowed and Wooster (1992) have hypothesized that the North Pacific alternates 
between two environmental states, with one  
transition occurring in 1977. The cool period prior to the transition, what they call a type 
A regime, is characterized by a weak  
winter Aleutian Low, enhanced westerly winds in the eastern Pacific, decreased 
advection into the Alaska Current, and  
negative coastal SST anomalies. A warm era (type B regime) is characterized by a strong 
winter Aleutian Low displaced to the  
east, enhanced southwesterly winds in the eastern Pacific, increased advection into the 
Alaska Current, and positive coastal  
SST anomalies.  

The mechanisms driving the late 1970s regime shift are the subject of much intensive 
research. Several hypothesized  
mechanisms have suggested links between this regime shift in the North Pacific and an 
abrupt climate shift in the tropical Pacific,  
which occurred in the late 1970s. Kashiwabara (1987) and Nitta and Yamada (1989) have 
hypothesized that changes in the  
tropical Pacific forced the change in North Pacific winter circulation patterns. Trenberth 
(1990) noted that, in the period  
between 1976 and 1988, there were three warming El Niño events, but no cooling La 
Niña events. Graham (1994) holds that  
the El Niño-La Niña cycle continued but the background state was set to a different state. 
Miller et al. (1994) were able to  
reproduce the 1976-77 shift with a general circulation model driven by heat flux input, 
suggesting that the atmosphere (as  
opposed to an ocean-atmosphere feedback loop) was the primary force. On the basis of 
observational analyses, Trenberth and  
Hurrell (1994) attribute North Pacific atmosphere-ocean variability to both local 
(atmospheric) and remote (tropical oceanic)  
processes with mid-latitude feedback serving to emphasize decadal scale variability.  

Late 1940s Shift  



The negative production shifts identified in the late 1940s were all significant, but of 
lesser magnitude than those of the late  
1970s. The t-values for the step interventions in the two-intervention models ranged from 
6.45 (p < 0.0001, southeast pink  
salmon) to 3.27 (p < 0.01, central pink salmon). The timing of the interventions we tested 
were selected in the same manner as  
for the late 1970s shift. Assuming a climate shift in the winter of 1946-47, the appropriate 
years to test are 1948 (both pink  
time series), 1949 (western Alaska sockeye), and 1950 (central Alaska sockeye). We 
estimate the combined drop in catch  
following the late 1940s intervention at approximately 30 million salmon annually, a 
decrease of nearly 50%.  

Evidence for an late 1940s regime shift is less confirming than for the late 1970s. To 
some extent, this may be due to the  
relative lack of data in comparison with that available for the later event. Also, if the 
salmon data are indicative of the physical  
data, the shift in physical variables is expected to be smaller and, therefore, more difficult 
to detect.  

Francis and Hare (1994) found a statistically significant negative step in 1947 in 
Trenberth and Hurrell's (1994) North Pacific  
Index, a measure of winter atmospheric variability. Several researchers (Dzerdzeevskii 
1962, Kutzbach 1970, Kalnicky 1974,  
Brinkmann 1981) have noted sharp changes in upper level atmospheric circulation 
patterns occurring in the late 1940s to early  
1950s. Balling and Lawson (1982) and Granger (1984) showed that rainfall patterns over 
the southwestern United States  
changed in the early 1950s. Rogers (1984) presented average winter air temperatures for 
Kodiak and Bristol Bay from  
1920-1983. With only a few exceptions, coastal Alaskan air temperatures remained 
anomalously low between the 1946-47  
and the 1976-77 winters. Surface-temperature trends in the northern hemisphere were 
shown by Jones (1988) to be in a cool  
period between the late 1940s and late 1970s. The frequency and intensity of El Niño-
Southern Oscillation events have  
undergone several changes in the past century (Trenberth 1990; Trenberth and Shea 
1987) with strong events between 1880  
and 1920, and 1950 and the present, and weak events between 1920 and 1950. Trenberth 
(1990) also noted the  
preponderance of cold (La Niña) tropical events during the 1950-1977 period compared 
with the present (1977-1990)  
imbalance marked by a greater number of warm (El Niño) events.  

Several data sets that we examined dated back only to the late 1940s. While not capable 
of demonstrating a shift in the late  



1940s, they do indicate a similarity of conditions for the 1947-1976 period. Between 
1949 and 1976, Emery and Hamilton  
(1985) classified 22 of 28 North Pacific sea-level pressure patterns as either weak or near 
normal. Hollowed and Wooster  
(1992) identified 24 of 31 winter atmospheric circulation patterns between 1946 and 1976 
as type A regimes (cool periods).  

Potential Mechanisms  

Establishing the mechanism whereby salmon production is driven by large-scale climate 
processes can only proceed by  
speculation at present. We alluded earlier to the general inability of most studies to 
establish predictable relationships between  
environmental variables and salmon survival and production that stand the test of time. 
Quinn and Marshall (1989), for  
example, found that inclusion of air and water temperature and freshwater discharge 
provided limited improvement to their  
time-series models of southeast Alaska salmon variability.  

At least two speculative mechanisms have been advanced to help explain the late 1970s 
rise in Alaskan salmon production.  
Rogers (1984) proposed that the increase in catch derived from increased marine survival 
of migrating salmon in their last  
winter at sea. Anomalously warm surface temperatures in the Gulf of Alaska altered both 
the migration paths and timing of  
returning salmon thus lessening their vulnerability to predators (principally marine 
mammals). Additional evidence for this  
hypothesis may be provided by the 1970s and 1980s decline in northern fur seal 
(Callorhinus ursinus) and Steller's sea lion  
(Eumetopias jubatus) (Merrick et al. 1987; York 1987).  

The second mechanism relates improved feeding conditions in the Alaska Current and 
Alaska Gyre to increased salmon  
production. Brodeur and Ware (1992) documented a twofold increase in zooplankton 
biomass between the 1950s and 1980s  
in the subarctic Pacific Ocean. They suggest that the primary beneficiaries of the elevated 
zooplankton biomass are juvenile  
salmon that migrate around the coastal margin of the CSD foraging on zooplankton 
advected to the oceanic shelf. Transport of  
zooplankton-rich waters derives from increased flow into the Alaska Current from the 
Subarctic Current (Pearcy 1992).  
Chelton (1984) has proposed that transport into the California and Alaska Currents 
fluctuates out of phase. This scenario  
suggests that the observed decrease in west coast salmon production may be due to poor 
feeding conditions resulting from  
decreased advection of subarctic water into the California Current (Pearcy 1992). Francis 



and Sibley (1991) illustrated  
opposite trends in production between Gulf of Alaska pink salmon and west coast coho 
salmon. The nature of the transitions  
from high (low) to low (high) production in both stocks suggests a single cause.  

Perhaps the most interesting feature of the salmon regimes we have identified is the 
nature of the level of persistence exhibited  
by the different stocks. Hollowed and Wooster (1992) found synchronous recruitment 
patterns in several groundfish species  
corresponding to switches between type A and type B regimes. Strong year-classes 
apparently derived from the onset of type  
B regimes. Subsequent year-classes, however, were much smaller. This appears to be 
quite different from the situation we have  
documented for Alaskan salmon. In addition, the average duration of type A and B 
regimes was 7-10 yr, whereas we have  
identified much longer period regimes based on Alaskan salmon dynamics. This suggests 
that different components of the North  
Pacific large marine ecosystem respond to forcing factors of different scales.  

Little is known about what causes low-frequency shifts in the structure and dynamics of 
large marine ecosystems. Margalef  
(1986) challenges us to develop a new paradigm in this regard. He suggests that 
infrequent and discontinuous changes in  
external (physical) energy are the most important factors affecting fluctuations in the 
biological production of these systems.  
These inputs, which he refers to as "kicks," disrupt established ecological relationships 
within an ecosystem.  

Dr. John Steele (Woods Hole Oceanographic Institution, Woods Hole, MA 02543, 
personal communication) puts it another  
way. He feels that, in the ocean, the variances of biological processes that respond to both 
physical and biological forcings are  
inversely proportional to their frequencies. If the variance of a process is forced beyond 
certain bounds or tolerances, that part  
of the system "snaps," such as when an earthquake occurs, forcing repercussions 
throughout the ecosystem. As in the case of  
an earthquake, many system variables that "snap" at the time of the earthquake 
demonstrate no aberrant behaviors prior to the  
earthquake itself. So perhaps it is with large marine ecosystems.  
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Appendix  

The following time-series model diagnostic and selection criteria were used.  

Box-Pierce Portmanteau test  

The joint null hypothesis Ho: r1 = r2 = ... = rK = 0 is tested with the statistic  

(A1)  

The hypothesis of white noise is rejected if Q > c2a,K-m, where K is the number of 
residuals calculated from the model and m is  
the number of estimated parameters.  
   
   

Mean Absolute Error (MAE)  

(A2)  
   

Unbiased residual variance s2a  

(A3)  
where RSS is the residual sum of squares and m is the number of estimated model 
parameters  
   
   

Coefficient of determination r²  

(A4)  
where z represents the (possibly) transformed and differenced observed values.  
   
   

Akaike's Information Criterion (AIC)  



(A5)  
where RSS is the residual sum of squares, K is the number of residuals, m is the number 
of estimated parameters, and s2a is the  
biased residual variance.  
   
   

Schwarz Bayesian Criterion (SBC)  

(A6)  

where the parameters have the same interpretation as for the AIC.  

0  

Table 1. Univariate and intervention ARIMA models with parameter estimates and 
associated standard errors developed for  
western Alaska sockeye salmon. Standard errors are given in paretheses below the 
equations.  
 Model  
                   Parameter estimates and standard errors  
 Univariate  
                   (1 - 0.538B - 0.505B5 + 0.369B6)ÖYt = 1.209 + at  
   

                   (0.107) (0.111) (0.122) (0.107)  
 One intervention  
   

 (1979)  
                   (1 - 0.299B - 0.499B5 + 0.253B6)ÖYt = 1.468 + at + 2.036It1979  
   

                   (0.121) (0.109) (0.131) (0.105) (0.415)  
 Two interventions  
   

 (1949, 1979)  
                   (1 + 0.305B3 - 0.377B5 + 0.225B6)ÖYt = 4.206 + at - 0.754It1949 +  
                   2.192It1979  
   

                   (0.121) (0.114) (0.117) (0.161) (0.188) (0.223)  
   

   



Table 2. Summary statistics for univariate and intervention ARIMA models developed 
for western Alaska sockeye salmon.  
MAE = mean absolute error of fitted values, s²a = unbiased residual variance, r² = 
coefficient of determination, AIC =  
Akaike's Information Criterion, SBC = Schwarz's Bayesian Criterion, and Q = 
portmanteau residual autocorrelation test (up to  
lag 20) and associated p-value. All statistics are calculated in the transformed metric.  
 Model  
                  MAE  
                            s²a  
                                      r²  
                                             AIC  
                                                      SBC  
                                                               Q  
                                                                      p value  
 Univariate  
                  0.741  
                            0.836  
                                    0.459  
                                             186.6  
                                                     195.5  
                                                              15.17  
                                                                      0.767  
 One intervention  
                  0.632  
                            0.667  
                                    0.575  
                                             172.0  
                                                     183.1  
                                                              13.64  
                                                                      0.848  
 Two interventions  
                  0.603  
                            0.607  
                                    0.623  
                                             166.4  
                                                     179.7  
                                                              17.43  
                                                                      0.625  
   

   

Table 3. Univariate and intervention ARIMA models with parameter estimates and 
associated standard errors developed for  
central Alaska sockeye salmon. Standard errors are given in paretheses below the 



equations.  
 Model  
                   Parameter estimates and standard errors  
 Univariate  
                   (1-0.568B - 0.316B2)ln Yt = 0.216 + at  
   

                   (0.117) (0.121) (0.034)  
 One intervention  
   

 (1980)  
                   (1-0.572B)ln Yt = 0.655 + at + 0.917It1980  
   

                   (0.102) (0.040) (0.188)  
 Two interventions  
   

 (1950, 1980)  
                   (1-0.310B)ln Yt = 1.197 + at - 0.409It1950 + 1.145It1980  
   

                   (0.120) (0.058) (0.112) (0.135)  
   

   

Table 4. Summary statistics for univariate and intervention ARIMA models developed 
for central Alaska sockeye salmon.  
MAE = mean absolute error of fitted values, s²a = unbiased residual variance, r² = 
coefficient of determination, AIC =  
Akaike's Information Criterion, SBC = Schwarz's Bayesian Criterion, and Q = 
portmanteau residual autocorrelation test (up to  
lag 20) and associated p-value. All statistics are calculated in the transformed metric.  
 Model  
                  MAE  
                           s²a  
                                     r²  
                                            AIC  
                                                     SBC  
                                                              Q  
                                                                     p value  
 Univariate  
                  0.255  
                           0.101  



                                   0.644  
                                            41.3  
                                                     47.9  
                                                             15.14  
                                                                     0.768  
 One intervention  
                  0.234  
                           0.094  
                                   0.672  
                                            35.7  
                                                     42.4  
                                                             14.13  
                                                                     0.824  
 Two interventions  
                  0.213  
                           0.087  
                                   0.704  
                                            31.1  
                                                     40.1  
                                                              9.92  
                                                                     0.970  
   

   

Table 5. Univariate and intervention ARIMA models with parameter estimates and 
associated standard errors developed for  
southeast Alaska pink salmon. Standard errors are given in paretheses below the 
equations.  
 Model  
                   Parameter estimates and standard errors  
 Univariate  
                   (1 - 0.277B - 0.410B2)ln Yt = 0.906 + at  
   

                   (0.112) (0.115) (0.073)  
 One intervention  
   

 (1978)  
                   (1 - 0.495B2)ln Yt = 1.377 + at + 0.593It1978  
   

                   (0.108) (0.084) (0.310)  
 Two interventions  
   



 (1948,1978)  
                   ln Yt = 3.284 + at - 1.032It1948 + 1.005It1978  
   

                   (0.121) (0.160) (0.183)  
   

   

Table 6. Summary statistics for univariate and intervention ARIMA models developed 
for southeast Alaska pink salmon. MAE  
= mean absolute error of fitted values, s²a = unbiased residual variance, r² = coefficient of 
determination, AIC = Akaike's  
Information Criterion, SBC = Schwarz's Bayesian Criterion, and Q = portmanteau 
residual autocorrelation test (up to lag 20)  
and associated p-value. All statistics are calculated in the transformed metric.  
 Model  
                  MAE  
                           s²a  
                                     r²  
                                            AIC  
                                                     SBC  
                                                              Q  
                                                                     p value  
 Univariate  
                  0.484  
                           0.397  
                                   0.348  
                                            133.7  
                                                    140.3  
                                                             14.43  
                                                                     0.808  
 One intervention  
                  0.515  
                           0.413  
                                   0.317  
                                            136.3  
                                                    143.0  
                                                             22.18  
                                                                     0.331  
 Two interventions  
                  0.452  
                           0.334  
                                   0.446  
                                            121.4  
                                                    128.1  



                                                             18.02  
                                                                     0.586  
   

   

Table 7. Univariate and intervention ARIMA models with parameter estimates and 
associated standard errors developed for  
central Alaska pink salmon. Standard errors are given in paretheses below the equations.  
 Model  
                   Parameter estimates and standard errors  
 Univariate  
                   (1 - 0.482B)ÖYt = 2.238 + (1 + 0.566B2)at  
   

                   (0.110) (0.178) (0.117)  
 One intervention  
   

 (1978)  
                   (1 - 0.252B)Ö Yt = 2.893 + (1 + 0.362B2at + 2.089It1978  
   

                   (0.128) (0.163) (0.135) (0.433)  
 Two interventions  
   

 (1948, 1978)  
                   Ö Yt = 4.377 + (1 + 0.241B2at - 0.946It1948 + 2.675It1978  
   

                   (0.219) (0.122) (0.289) (0.327)  
   

   

Table 8. Summary statistics for univariate and intervention ARIMA models developed 
for central Alaska pink salmon. MAE =  
mean absolute error of fitted values, s²a = unbiased residual variance, r² = coefficient of 
determination, AIC = Akaike's  
Information Criterion, SBC = Schwarz's Bayesian Criterion, and Q = portmanteau 
residual autocorrelation test (up to lag 20)  
and associated p-value. All statistics are calculated in the transformed metric.  
 Model  
                  MAE  
                           s²a  



                                     r²  
                                            AIC  
                                                     SBC  
                                                              Q  
                                                                     p value  
 Univariate  
                  0.726  
                           0.915  
                                   0.583  
                                            191.2  
                                                    197.9  
                                                              9.63  
                                                                     0.974  
 One intervention  
                  0.628  
                           0.797  
                                   0.653  
                                            181.9  
                                                    190.8  
                                                             10.81  
                                                                     0.951  
 Two interventions  
                  0.608  
                           0.745  
                                   0.672  
                                            177.1  
                                                    1846.0  
                                                             20.03  
                                                                      0.456  
   

   

Figure captions  

Figure 1. Trend in total Alaskan salmon catch, 1925-1992.  

Fig. 2. ADFG statistical areas and regional salmon stocks used in this study.  

Fig. 3. Plots of the autocorrelation (ACF) and partial autocorrelation (PACF) functions 
for the four salmon time series. The  
ACF and PACF are computed for the appropriately differenced and transformed time 
series.  

Fig. 4. Plots of model fits for ARIMA and intervention models developed for western 
Alaska sockeye salmon time series,  



1925-1992. Landings data are indicated by dashed lines, fitted values by thick lines. 
Estimated means before and after  
interventions are shown by straight lines. Timing of the step interventions and resultant 
change in mean are also shown.  

Fig. 5. Plots of model fits for ARIMA and intervention models developed for central 
Alaska sockeye salmon time series,  
1925-1992. Landings data are indicated by dashed lines, fitted values by thick lines. 
Estimated means before and after  
interventions are shown by straight lines. Timing of the step interventions and resultant 
change in mean are also shown.  

Fig. 6. Plots of model fits for ARIMA and intervention models developed for southeast 
Alaska pink salmon time series,  
1925-1992. Landings data are indicated by dashed lines, fitted values by thick lines. 
Estimated means before and after  
interventions are shown by straight lines. Timing of the step interventions and resultant 
change in mean are also shown.  

Fig. 7. Plots of model fits for ARIMA and intervention models developed for central 
Alaska pink salmon time series,  
1925-1992. Landings data are indicated by dashed lines, fitted values by thick lines. 
Estimated means before and after  
interventions are shown by straight lines. Timing of the step interventions and resultant 
change in mean are also shown.  

Fig. 8. Summary of major oceanographic features of the North Pacific.  
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